The Effects of Nitrogen Addition on the Production of Ultrafine/Nano Grained AISI 201L Stainless Steel by Advanced Thermo-mechanical Process

Document Type : Research Paper

Authors

Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

Abstract

In this study, the effects of nitrogen addition on the production of ultrafine/nano grained AISI 201L stainless steel by advanced thermo-mechanical process were investigated. Cast samples were first homogenized at 1200 °C for 4 h, hot-rolled at 1100 °C and finally, solution-annealed at 1150 °C for 2.5 h. Unidirectional and cross multipass cold rolling at 25 °C was carried out to 90% reduction in thickness, followed by annealing at temperature and time range of 800–900 °C and 15–1800 s, respectively. The results showed that increasing nitrogen led to the decrease of delta ferrite content and austenite grain size after solution annealing. It was also found that decreasing nitrogen content and using cross rolling resulted in an increased volume fraction of the strain induced martensite (SIM) and reduced saturation strain of martensite formation during cold rolling. Also, the results from the reversion process revealed that with increasing nitrogen concentration, the formation of thermally induced martensite was suppressed.

Keywords


[1] H. K. D. H. Bhadeshia and R. Honeycombe:
Steels Microstructure and Properties, Third edition,
Butterworth Heinemann, Oxford, (2006).
[2] N. Nakada, N. Hirakawa and T. Tsuchiyama:
Scripta Mater., 57(2007) 153-156.
[3] M. Karimi, A. Najafizadeh, A. Kermanpur and M.
Eskandari: Mater. Charac., 60(2009) 1220 –1223.
[4] R. Song, D. Ponge, D. Raabe, J.G. Speer and D.K
Matlock: Mater. Sci. Eng., A 441(2006) 1-17.
[5] D.C. Cook: Metall. Trans., 18A (1987) 201-210.
[6] T. Angel: Journal of the Iron and Steel Institute,
177(1954) 165-174.
[7] A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti
and S. Tarafder: Mater. Sci. Eng., A 486(2008) 283–
286.
[8] R.D.K. Misra, Z. Zhang, P.K.C. Venkatasurya,
M.C. Somani and L.P. Karjalainen: Mater. Sci. Eng.,
A 528(2011), 1889–1896.
[9] R.D.K. Misra, Z. Zhang, P.K.C. Venkatasurya,
M.C. Somani and L.P. Karjalainen: Mater. Sci. Eng.,
A 527(2010) 7779–7792.
[10] J. Yong Choi, J. Hoon Ji, S. Hwang and K.T.
Park: Mater. Sci. Eng., A 522(2011) 582–586.
[11] Y.K. Lee: Mater. Lett, 21(2002) 1149-1151.
[12] T.H. Lee, Ch. Seok Oh and S.J. Kim: Scripta
Mater., 58(2008) 110-113.
[13] J. Talonen and H. Hänninen: Acta Mater, 55(2007)
6108–6118.
[14] S. Frechard, A. Redjiımia, E. Lach and A.
Lichtenberger: Mater. Sci. Eng., A 415(2006) 219–
224.
[15] S. Saeedipour, A. Najafizadeh and A. Kermanpour:
6th Joint Conf. of IMES, Tehran University, (2012).
[16] G. H. Eichelman and F. C. Hull: Trans. Am. Soc.
Met., 45(1953) 77-95.