An Investigation on Mechanical Properties of Ultrafine Grained 316 Stainless Steel by Thermomechanical Treatment

Document Type : Research Paper


1 Department of Materials Engineering, Faculty of Engineering, Shahrekord University, Shahrekord. Iran

2 Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

3 Department of Materials and Polymer Engineering, Hakim Sabzevari University, Sabzevar, Iran


In this paper, an advanced thermo-mechanical treatment was conducted on AISI 316 austenitic stainless steel. At first, three samples were rolled at the ambient temperature, the temperature of -20 ºC (dry ice and ethanol) and -196 ºC (liquid nitrogen). Then, the samples were annealed at 800 ºC in the time range of 1 to 15 minutes. In each step, the microhardness values of the samples were measured. Microstructural investigations were conducted using optical and SEM microscopes and Clemex software. Results showed that microhardness of the samples increased due to the formation and precipitation of carbides. The formation of martensitic microstructure after the rolling process was revealed by X-ray diffraction analysis; and by decreasing the rolling temperature, the peak intensity increased. Also, by increasing the annealing time in each step, the volume fraction of the reverted austenite and the intensity of the austenite peaks increased.


V. F. Zackay, E. R. Parker, D. Fahr, R. Busch: Trans. Am. Soc. Met., 60(1967), 252.
M. F. McGuire: Stainless Steels for Design Engineers, Materials Park, Ohio: ASM International, (2008).
G. E. Totten: Steel Heat Treatment, Taylor and Francis Group, Portland, Oregon, U.S.A, (2007).
M. E. Bajgholi, R. Soltani Tashi, A. A. Akbari Mousavi, E. Heshmat Dehkordi: Adv. Mater. Processes., 1(2013), 47.
J. C. Lippold, D. J. Kotecki: Welding Metallurgy and Weldability of Stainless Steels, New Jersey, Wiley Interscience, (2005).
J. W. Elmer, S. M. Allen, T. W. Eager: Metall. Mater. Trans. A., 20A(1988), 1989.
J. Talonen, H. Hänninen: Metall. Mater. Trans. A., 35(2004), 2401.
J. W. Fu, , Y. S. Yang, , J. J. Guo, , J. C. Ma, W. H. Tong: J. Cryst. Growth., 311(2008), 132.
K. H. Lo, C. H. Shek, J. K. L. Lai: Mater. Sci. Eng., 65(2009), 39.
D. Fabr, Metall. Mater. Trans. A., 2(1971), 1883.
J. Speer, D. Matlock, D. C. Murdock: Metall. Mater. Trans. A., 37(2006), 1875.
K. Tomimura, S. Tukaki, S. Tuminutu, Y. Tokunaga: ISIJ Int., 31(1991), 721.
S. Takaki, K. Tomimura, S. Ueda: ISIJ Int., 34(1994), 522.
R. Misra, B. R. Kumar, M. Somani, P. Karjalainen: Scripta Mater., 59(2008), 79.
N. Tsuji: Production of Bulk Nono-structured Metals by Accumulative Roll Bonding (ARB), Nova Science Publisher, Chapter 7.4, (2005), 543-564.
R. Song, D. Ponge, D. Raabe, J. G. Speer, D. K. Matlock: Mater. Sci. Eng. A., 441(2006), 1.
A. D. Schino, I.Salvatori, J. Kenny: J. Mater. Sci., 37(2002), 4561.
B. R. Kumar, S. Das, S. Sharma, J. Sahu: Mater. Sci. Eng. A., 527(2010), 875.
A. Momeni, S. Abbasi: J. Mater. Sci. Techn., 27(2011), 338.
B. R. Kumar, S. Sharma, B. Mahato: Mater. Sci. Eng. A., 528(2011), 2209.
ASTM E8 Standard Test Methods for Tension Testing of Metallic Materials.
M. J. Dickson: J. Appl. Crystallogr., 2(1969), 176.
R. M. Latanision, A. W. Jr Ruff: Metall. Mater. Trans. A., 2(1970), 505.
P. Haušild, V. Davydov, J. Drahokoupil, M. Landa, P. Pilvin: Mater. Des., 31(2010), 1821.
J. Talonen, P. Aspegren, H.Hänninen: Mater. Sci. Techn., 20(2004), 1506.