Investigating the effect of distance of carbon steel particles from the impacted surface on mechanical properties in SMAT process of AZ31 using molecular dynamics

Document Type : Research Paper


1 Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Isfahan, Iran

2 Department of Materialsl Engineering, Majlesi Branch, Islamic Azad University, Isfahan, Iran



In the surface mechanical attrition treatment (SMAT) process, the material surface layer is peened with a high-velocity number of carbon steel shot particles. Various parameters such as the distance of the peening gun to the impacted surface can affect the material's surface mechanical properties in the SMAT process. In this paper, the molecular dynamics (MD) approach has been used to study the effect of particle distance from the impacted surface on mechanical and physical behavior of AZ31 after the SMAT process. For this purpose, Universal Force Field (UFF) and Embedded Atom Model (EAM) force field have been utilized for atomic interactions. Based on the molecular simulation results, residual stress, hardness, and temperature of the atomic surface layer have been obtained for various distances. The simulation results demonstrated that reducing the particle distance in the SMAT process increases residual stress and surface layer hardness. Numerically, the maximum residual stress value of 268 MPa has been obtained for a distance of 5 nm in the SMAT molecular simulation results.


Main Subjects

  1. K. Lu, J. Lu, Nanostructured surface layer on metallic

materials induced by surface mechanical attrition treat-

ment, Mater. Sci. Eng. A 375 (377) (2004) 38–45.

  1. N. Tao, H. Zhang, J. Lu, K. Lu, Development of nano-

structures in metallic materials with low stacking fault

energies during surface mechanical attrition treatment

(SMAT), Mater. Trans. 44 (10) (2003) 1919–1925.

  1. T. Roland, D. Retraint, K. Lu, J. Lu, Enhanced me-

chanical behavior of a nanocrystallised stainless steel and

its thermal stability, Mater. Sci. Eng. A 445 (446) (2007)


  1. T. Roland, D. Retraint, K. Lu, J. Lu, Fatigue life im-

provement through surface nanostructuring of stainless

steel by means of surface mechanical attrition treatment,

Scr. Mater. 54 (11) (2006) 1949–1954.

  1. L. Waltz, D. Retraint, A. Roos, C. Garnier, P. Olier,

Effect of interfacial oxidation occurring during the du-

plex process combining surface nanocrystallisation and

corolling, Surf. Coat. Technol. 205 (19) (2011) 4608–


  1. M. Chemkhi, D. Retraint, A. Roos, C. Demangel, Role

and effect of mechanical polishing on the enhancement

of the duplex mechanical attrition/plasma nitriding treat-

ment of AISI 316L steel, Surf. Coat. Technol. 325 (2017)


  1. L. Wen, Y. Wang, Y. Zhou, L.X. Guo, J.H. Ouyang,

Iron-rich layer introduced by SMAT and its effect on

corrosion resistance and wear behavior of 2024 Al alloy,

Mater. Chem. Phys. 126 (1–2) (2011) 301–309.

  1. M. Duan, L. Luo, Y. Liu, Microstructural evolution of

AZ31 Mg alloy with surface mechanical attrition treat-

ment: Grain and texture gradient, J. Alloys. Compd. 823


  1. X. Meng, M. Duan, L. Luo, D. Zhan, B. Jin, Y. Jin,
  2. Lu, The deformation behavior of AZ31 Mg alloy with

surface mechanical attrition treatment, Mater. Sci. Eng.

  1. 707 (2017) 636–646.
  2. S. Xia, Y. Liu, D. Fu, B. Jin, J. Lu, Effect of

Surface Mechanical Attrition Treatment on Tribological

Behavior of the AZ31 Alloy, J. Mater. Sci.Tech. 32 (12)

(2016) 1245–1252.

  1. M. Mahmoodi, H. Tagimalek, H. Sohrabi, M.R. Mara-

ki, Using the artificial neural network to investigate the

effect of parameters in square cup deep drawing of alumi-

num-steel laminated sheets, I.J.I.S.S.I. 17(2) (2020) 1-3.

  1. S. A. Eftekhari, D. Toghraie, M. Hekmatifar, R. Sa-

betvand, Mechanical and thermal stability of armchair

and zig-zag carbon sheets using classical MD simula-

tion with Tersoff potential. Phys. E: Low- Dimens. Syst.

Nanostructures.133 (2021) 114789.

  1. L. Zhao, M.K.M. Nasution, M. Hekmatifar, The

improvement of mechanical properties of conventional

concretes using carbon nanoparticles using molecular

dynamics simulation, Sci. Rep. 11(2021) 20265.

  1. A. Moradi, A. Heidari, K. Amini, F. Aghadavoudi,
  2. Abedinzadeh, Molecular modeling of Ti-6Al-4V al-

loy shot peening: the effects of diameter and velocity of

shot particles and force field on mechanical properties

and residual stress, Simul. Mater. Sci. Eng. 29(6) (2021)


  1. D. T. Semiromi, A. R. Azimian, Molecular dynam-

ics simulation of nonodroplets with the modified Len-

nard-Jones potential function, Heat. Mass. transfer. 47(5)

(2011) 579-588.

  1. H. Noorian, D. Toghraie, A. R. Azimian, The effects

of surface roughness geometry of flow undergoing Po-

iseuille flow by molecular dynamics simulation, Heat.

Mass. Transfer. 50(1) (2014) 95-104.

  1. D. T. Semiromi, A. R. Azimian, Nanoscale Poiseuille

flow and effects of modified Lennard–Jones potential

function, Heat. Mass. Transfer. 46(7) (2010) 791-801.

  1. D. T. Semironi, A. R. Azimian, Molecular dynamics

simulation of liquid–vapor phase equilibrium by using

the modified Lennard-Jones potential function, Heat.

Mass. Transfer. 46(3) (2010) 287-294.

  1. M. Griebel, S. Knapek, G. Zumbusch, Numerical

Simulation in Molecular Dynamics, Ber. Hei. Spr. (2007)


  1. J. E. Jones "On the determination of molecular fields.

—II. From the equation of state of a gas", S. A. Cont.

Pap. Math. Phys. Char. 106 (738) (1924) 463–477.

  1. A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A.

Goddard, W. M. Skiff, UFF, a full periodic table force

field for molecular mechanics and molecular dynamics

simulations, J. A. C.S. 114(25) (1992) 10024–10035.

  1. M. S. Daw, B. Mike, "Embedded-atom method: Der-

ivation and application to impurities, surfaces, and other

defects in metals", Phys. Rev. B. 29 (12) (1984) 6443–


  1. M. S. Daw, S. M. Foiles, M. I. Baskes, The embed-

ded-atom method: a review of theory and applications,

Mat. Sci. Eng. Rep. 9 (7–8) (1993) 251.

  1. T. Schlick, Molecular modeling and simulation: an

interdisciplinary guide, New York, Springer, (2010).

  1. L. Verlet, Computer "Experiments" on Classical Flu-

ids. I. Thermodynamical Properties of Lennard−Jones

Molecules, Phys. Rev. 159 (1) (1967) 98–103.

  1. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B.
  2. Flannery, Section 17.4. Second-Order Conservative

Equations". Numerical Recipes: The Art of Scientific

computing (3rd ed), New York, Cambridge University

Press, (2007).

  1. E. Hairer, C. Lubich, G. Wanner, Geometric numer-

ical integration illustrated by the Störmer/Verlet method,

Acta. Numerica. 12 (2003) 399–450.

  1. W. Mai, P. Li, H. Bao, X. Li, L. Jiang, J. Hu, D. H.

Werner, Prism-Based DGTD With a Simplified Periodic

Boundary Condition to Analyze FSS With D2n Symmetry

in a Rectangular Array Under Normal Incidence, IEEE.

Antennas. Wirel. Propag. Lett.18(4) (2019) 771–775.

  1. S. Nosé, A unified formulation of the constant tem-

perature molecular-dynamics methods, J. C. Phys. 81 (1)

(1984) 511–519.

  1. W. G. Hoover, Canonical dynamics: Equilibrium

phase-space distributions, Phys. Rev. A. 31 (3) (1985)