Optimization of Blast Furnace through Reducing Coke Consumption and CO2 Emission using HSC Software

Document Type : Research Paper


School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.



In this paper, a comprehensive evaluation of the charged materials, energy consumption and CO2 emissions of blast furnace (BF) is done by relating the operating data from the Esfahan steel company (ESCO) with the established static process models. The mass and energy balance calculations were performed using the HSC software. This model is capable of predicting 16 independent variables of the 150 total variables at the same time. The model was verified by comparing the results with the ESCO BF No. 3 off gas, slag and dust composition and were found in 8% deviation from the operating data. The model indicated that increasing the hot air blast temperature and CH4 injection, reducing coke ash level and slag volume in the product improved the plant productivity. Compared with a convectional BF, the results of optimization showed that the energy consumption, CO2 emission and coke consumption were reduced by 3% (~183 Gj/THM), 16% (~0.56 kg/THM) and 15% (~79.5 kg/THM), respectively. The energy efficiency was calculated at 81.84% and was increased by about 5% in the optimizing conditions.


Main Subjects

[1] A. Pribulová, P. Futáš, J. Petrík, M. Pokusová, M. Brzeziński, J. Jakubski: Arch. Metall. Mater., 63 (2018), 1865.
[2] M. Sharifi, S. Parchami, B. Raky, S. Parchami, B. Raky, S. Mardani: ISIJ Int., 17 (2020) 21.
[3] M. Laputka, W. Xie: Min. Metall. Explor., 38 (2021), 1135.
[4] A. Agrawal, K. Mahesh, A. Kothari: Ironmak. Steelmak., 46 (2017), 133.
[5] Y. Hashimoto, Y. Okamoto, T. Kaise, Y. Sawa, M. Kano: ISIJ Int., 59 (2019), 1573.
[6] D. Rosado, S. Chavez, J. Gutierrez: Appl. Therm. Eng., 169 (2020), 114905.
[7] J. Orre, L. Okvist, A. Boden: J. Minerals, 11 (2021), 157.
[8] J. Peacey, W. Davenport: The iron blast furnace: theory and practice, Elsevier (2016).
[9] C. Yilmaz, T, Turek: J. Clean. Prod., 164 (2017), 1519.
[10] H. Xie, R. Li, Z. Yu, Z. Wang: J. Energy, 200 (2020), 117481.
[11] World Steel Association. World Steel in Figures 2019 Now Available.
[12] X. Shen, L. Chen, S. Xia, Z. Xie, X. Qin: J. Clean. Prod., 172 (2018), 2153.
[13] E. Mousa, M. Lundgren, L. Ökvist, A, Robles, SA. Hällsten, B. Sundelin, H. Friberg, A. El-Tawil: J. Sustain. Met., 5 (2019), 391.
[14] H. Mandova, S. Leduc, C. Wang, E. Wetterlund, P. Patrizio, W. Gale, F. Kraxner: J. Biosci. Bioeng., 115 (2018), 231.
[15] H. Raupenstrauch, K. Doschek-Held, J. Rieger, W. Reiter: J. Sustain. Met., 5(2019), 310.
[16] E. Mousa, M. Lundgren, L. Ökvist, LE. From, A. Robles: J. Sustain. Met., 5(2019), 391.
[17] L. Ökvist, P. Lagerwall, B. Sundelin, J. Orre, M. Brämming, M. Lundgren: J. Stahl Eisen, 137 (2017), 29.
[18] W. Sun, Z. Wang, Q. Wang: J. Energy, 199 (2020), 117497.
[19] S. Ren, T. Aldahri, W. Liu, B. Liang: J. Energy, 214 (2021), 118975.
[20] Q. Li, L. Zhang, X. Gao, J. Zhang: Constr. Build. Mater., 230 (2020), 116990.
[21] B. Prakash, N. Nurni, S. Henrik: Miner. Process. Extr. Metall., 129 (2020), 166.
[22] J. Castro, G. Medeiros, A. Oliveira: J. Sustain. Met., 6 (2020), 281.
[23] D. Gaskell, D. Laughlin: Introduction to the Thermodynamics of Materials, 6th Edition, (2017).
[24] A. Biswas: Principles of Blast Furnace ironmaking: Theory and Practice, Cootha Publishing House, (1981).
[25] E. Ertem, S. Gurgen: Appl. Therm. Eng., 26 (2006), 1139.
[26] JE. Bringas: Handbook of comparative world steel standards, ASTM DS67B, Third edition, (2004).
[27] Standardization Administration of China. General Principles for Calculation of the Comprehensive Energy Consumption; Standardization Administration of China: Beijing, China, (2008).
[28] World Resources Institute & World Business Council for Sustainable Development. The Greenhouse Gas Protocol; WRI:Washington, DC, USA, (2013).