Oxidation Behavior of AISI 316 Steel Coated with Ni-P-TiO2-Al2O3 Composite Coating

Document Type : Research Paper


1 Department of Materials Engineering, Faculty of Mechanical and Materials Engineering, Graduate University of Advanced Technology, Kerman 7631133131, Iran

2 Department of Mechanical Engineering, Higher Education Complex of Bam, Bam 7661314477, Iran



Austenitic steels have numerous applications in high-temperature environments. The thermally-grown chromia scale on the steel surface may be-come unstable at high temperatures and as a result, oxidation resistance of steel will decrease. A potentially method for improving oxidation properties is the use of composite coatings using techniques such as electroplating. In the present study, Ni-P-TiO2-Al2O3 composite coating was deposited on AISI 316 steel sub-strate by electroplating. The as-coated samples were examined with scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). X-Ray diffraction (XRD) was also used to identify the formed phases in the as-coated structures. In order to evaluate oxidation behavior, isothermal oxidation and cy-clic oxidation were conducted at 800 ºC. Isothermal oxidation of uncoated steels revealed higher weight gain in comparison with Ni-P-TiO2-Al2O3 composite-coated samples. The coating layer limited the outward diffusion of Cr cation and the inward diffusion of oxygen anion and resulted in better oxidation resistance. According to the results of cyclic oxidation, coated substrates demonstrated excel-lent resistance against spallation and cracking.


Main Subjects

[1] Z. Yang, G. Xia, S. P. Simner and J. W. Stevenson: J. Electrochem. Soc., 152(2005), 1896.
[2] R. Trebbels, T. Markus and L. Singheiser: J. Electrochem. Soc., 157(2010), 490.
[3] C. Hsu: Surf. Coat. Technol., 231(2013), 380.
[4] I. Haq, U. Akhtar, T. Khan and A. Ali Shah: Surf. Coat. Technol., 235(2013), 691.
]5 [B. Szczygiel and M. Kolodziej:  Electrochim. Acta., 50(2005), 4188.
]6 [S. L.Kuo: Mater. Chem. Phys., 86(2004), 5.
]7[ H. Sheu, P. Huang, L. Tsai and K. Hou: Surf. Coat. Technol., 235(2013), 529.
[8] T. Tamilarasan, R. Rajendran, G. Rajagopaland J. Sudagar: Surf. Coat. Technol., 276(2015), 320.
[9] M. Chou, M. Ger, S. Ke, Y. Huang and S. Wn: Mater. Chem. Phys., 92(2005), 146.
[10] B. G. Mellor: Surface coating for protection against wear, CRC Press, Boca Raton, Florida, (2006).
[11] P. Sahooand, S. K. Pal: Tribol. Lett., 289(2007), 191.
[12] Sh. Guangjie, Ch. Ling, W. Fengyan, Ch. Junming and Q. Xiujuan: Mater. Chem. Phys., 90(2005), 327.
[13] A. Mosavi, and H. Ebrahimifar: Int. J. Hydrogen Energy., 45(2020), 3145.
[14] H. Gül,F. Kılıc, S. Aslan,A. Alp and H. Akbulut: Wear., 267(2009), 976.
[15]  L. Chen, L. Wang, Z. Zeng and J Zhang: Mater. Sci. Eng., A, 434(2006), 319.
]16] W. Shao, D. Nabb, N. Renevier, I. Sherrington and J. K. Luo: Mater. Sci. Eng., 40(2012), 1.
]17] X. J. Sunand, J. G. Li: Inst.Mater. Sci. Eng., 28(2007), 223.
[18] J. M. Huang, Y. Li,G. F.Zhang, X. D. Hou and D. W. Deng: Surf. Eng., 29(2013), 194.
[19] S. Geng, S. Qi, Q. Zhao, S. Zhu and F. wang: Int. J. Hydrogen Energy, 37(2012), 10850.
[20] N. Shaigan, W. Qu, D. J. Ivey and W. Chen: J. Power Sources, 195(2010), 1529.
[21] E. Rudnik, L. Burzyńska, L. Dolasiński and M. Misiak: Appl. Surf. Sci., 256(2010), 7414.
[22] L. Burzyńska, E. Rudnik, J. Koza, L. Blaz and W. Szymanski: Surf. Coat. Technol., 202(2008), 2545.
[23] W. Chen., Y. He and W. Gao: Surf. Coat. Technol., 204(2010), 2487.
[24] C.S. Lin, C.Y. Lee, C.F. Chang and C.H. Chang: Surf. Coat. Technol., 200(2006), 3690.
[25] D. Thiemig and A. Bund: Surf. Coat. Technol., 202(2008), 2976.
[26] T. Lampke, A. Leopold, D. Dietrich, G. Alisch and B. Wielage: Surf. Coat. Technol., 201(2006), 3510.
[27]M. Abaei, M. Zandrahimi and H. Ebrahimifar: Int. J. Mater. Res., 110(2019), 253.
[28] E. Khoran, M. Zandrahimi and H. Ebrahimifar: Oxid. Met., 91(2019), 177.
[29] X. Peng, D. Ping, T. Li and W. Wu: J. Electrochem. Soc.,145(1998), 389.
[30] X. Peng, T.Li and W. Wu: Oxid. Met., 51(1999), 291.
[31] W. Zhou, Y.G. Zhao, W. Li, B. Tian, S. W. Hu and Q.D. Qin: Mater. Sci. Eng., A, 458(2007), 34.
[32] Y. J. Xue, H. B.Liu, M. M. Lan, J. S. Li and H. Li: Surf. Coat. Technol., 204(2010), 3539.
[33] N. S. Qu, D. Zhu and K. Chan: Scr. Mater., 54(2006), 1421.
[34] A. Holt and P. Kofstad: Solid State Ionics, 69(1994), 137.
[35] A.S. Khanna: Introduction to high temperature oxidation and corrosion, ASM International, Materials Park, OH, (2002), 128.
[36] M. Stanislowski, E.Wessel, K. Hilpert, T. Markus and L. Singheiser: J. Electrochem. Soc., 154(2007), 295.
[37] G. C. Wood and D.P. Whittle:  J. Electrochem. Soc., 115(1968), 126.
[38] S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins and M. Sennour: J. Power Sources, 171(2007), 652.
[39] F. Saeidpour, M. Zandrahimi and H. Ebrahimifar: Corros. Sci., 153(2019), 200.
[40] A. Petric and H. Ling: J. Am. Ceram. Soc., 90(2007), 1515.
[41] W. Qu, L. Jian, G. Douglas Ivey and J. M. Hill: J. Power Sources., 157(2006), 335.
[42] R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke: Oxid. Met., 37(1992), 81.
[43] M.G. C.  Cox, B.  Mcenaney and V.D.  Scott:  Philos. Mag., 26(1972), 839.
[44] H. Kurokawa, K. Kawamura and T. Maruyama: Solid State Ionics, 168(2004), 13.
[45] S. K. Mitra, S.K.Roy and S. K. Bose: Oxid. Met., 34(1990), 101.
[46] S. K. Mitra, S.K.Roy and S. K. Bose: Oxid. Met., 39(1993), 221.
[47] I. M. Allam, D.P.Whittle and J. Stringer: Oxid. Met., 12(1978), 35.
[48] L. Zhu, X.Peng, J. Yan and F. Wang: Oxid. Met., 62(2009), 411.
[49] T. C. Wang, R. Z. Chen and W. H. Tuan: J. Eur. Ceram. Soc., 23(2003), 927.
[50] H. V. Pham, D. Maruoka and M. Nanko: J. Asian Ceram. Soc., 4(2016), 120.
[51] K. H. Hou and Y. C. Chen: Appl. Surf. Sci., 257(2011), 6340.
[52] H. Ebrahimifar and M. Zandrahimi: Surf. Coat. Technol., 206(2011), 75.
[53] H. Ebrahimifar and M. Zandrahimi: Oxid. Met., 84(2015), 329.
[54] H. Ebrahimifar and M. Zandrahimi: Oxid. Met., 84(2015), 129.
[55] H. Ebrahimifar and M. Zandrahimi: Ionics, 18(2012), 615.
[56] H. Ebrahimifar and M. Zandrahimi: Solid State Ionics, 183(2011), 71.
[57] K.T.Jacob and C.B.Alcock: J. Solid State Chem. 20(1977), 79. 
[58] E. N’Dah, S. Tsipas, M. P. Hierro and F. J. Pe´rez: Corros. Sci., 49(2007), 3850.
[59] S. Molin, B. Kusz, M. Gazda and P. Jasinski: J. Power Sources, 181(2008), 31.
[60] F. Saeidpour, M. Zandrahimi and H. Ebrahimifar: Int. J. Hydrogen Energy, 44(2019), 3157.
[61] W.Z. Zhu and S.C. Deevi: Mater. Res. Bull., 38(2003), 957.
[62] L. Cooper, S. Benhaddad, A. Wood and D. G. Ivey: J. Power Sources, 184(2008), 220.
[63] T. Horita, Y. Xiong, K. Yamaji, N. Sakai and H. Yokokawa: J. Electrochem. Soc., 150(2003), 243.
[64] H. Ebrahimifar and M. Zandrahimi: Oxid. Met., 75(2010), 125.
[65] M. Landkof, A.V. Levy, D.H. Boone, R. Gray and E. Yaniv: Corros. Sci., 41(1985), 344.