بررسی اثر ضخامت تختال بر روی انجماد فولاد کم کربن در ریخته گری پیوسته: یک مطالعه موردی شبیه سازی


  1. [1] J. Hejazi, Ingot Casting, Irainan Foundarymen Soci-

    ety, 1982, (in Persian).

    [2] B. Petrus, D. Hammon, M. Miller, B. Williams, A.

    Zewe, Z. Chen, J. Bentsman, B. Thomas, Newmethod to

    measure metallurgical length and application to improve

    computational models, Iron and Steel Technology Con-

    ference and 7th International Conference on the Science

    and Technology of Ironmaking, Cleavlad , USA, 2015.

    [3] X. Huang, B. Thomas, Modeling of steel grade tran-

    sition in continuous slab casting processes, Metallur-

    gical Transactions B. 24 (1993) 393-379. https://doi.

    org/10.1007/BF02659140.

    [4] C. Santos, J. Spim, A. Garcia, Mathematical model-

    ing and optimization strategies (genetic algorithm and

    knowledge base) applied to the continuous casting of

    steel, Engineering Applications of Artificial Intelligence.

    16 (2003) 511-527. https://doi.org/10.1016/S0952-

    1976(03)00072-1.

    [5] M. Long, D. Chen, J. Zhang, Q. Ouyang, Novel on-

    line temperature control system with closed feedback

    loop for steel continuous casting, Ironmaking & Steel-

    making. 38 (2011) 620-629. https://doi.org/10.1179/174

    3281211Y.0000000042.

    [6] L. Klimeš, J. Štětina, A rapid GPU-based heat trans-

    fer and solidification model for dynamic computer sim-

    ulations of continuous steel casting, Journal of Materi-

    als Processing Technology. 226 (2015) 1-14. https://doi.

    org/10.1016/j.jmatprotec.2015.06.016.

    [7] S. Louhenkilpi, M. Mäkinen, S. Vapalahti, T. Räisänen,

    1. Laine, 3D steady state and transient simulation tools

    for heat transfer and solidification in continuous casting,

    Materials Science and Engineering: A. 413(2005) 135-

    1. https://doi.org/10.1016/j.msea.2005.08.153.

    [8] K. Zheng, B. Petrus, B. G. Thomas, J. Bentsman,

    Design and implementation of a real-time spray cooling

    control system for continuous casting of thin steel slabs,

    Proceeding AISTech Steelmaking Conference, Indianap-

    olis, 2007.

    [9] J. Yang, Z. Xie, Z. Ji, H. Meng, Real-time heat trans-

    fer model based on variable non-uniform grid for dynam-

    ic control of continuous casting billets, ISIJ international.

    54 (2014) 328-335. https://doi.org/10.2355/isijinterna-

    tional.54.328.

    [10] B. Petrus, K. Zheng, X. Zhou, B. Thomas, J. Bents-

    man, Real-time, model-based spray-cooling control

    system for steel continuous casting, Metallurgical and

    materials transactions B. 42 (2011) 87-103. https://doi.

    org/10.1007/s11663-010-9452-7.

    [11] T. Männikkö, E. Laitinen, P. Neittaanmäki, Re-

    al-time simulation and control system for the continuous

    casting process, in: H.-H. Sebastian, K.Tammer (eds),

    System Modelling and Optimization, Springer-verlag

    Berlin Heidelberg GmbH, 1990, pp.809-817.

    [12] E. Laitinen, P. Neittaanmäki, T. Männikkö, On the Real-time Simulation and Control of the Continuous

    Casting Process, In: J. Manley, S. McKee, D. Owens

    (eds), Proceedings of the Third European Conference on

    Mathematics in Industry, Springer-verlag Berlin Heidel-

    berg GmbH, 1990, pp.401–408.

    [13] L. Guo, Y. Tian, M. Yao, H. Shen, Temperature dis-

    tribution and dynamic control of secondary cooling in

    slab continuous casting, International Journal of Miner-

    als, Metallurgy and Materials. 16 (2009) 626-631. https://

    doi.org/10.1016/S1674-4799(10)60003-9.

    [14] M. Jauhola, E. Kivela, J. Konttinen, E. Laitinen, S.

    Louhenkilpi, Dynamic secondary cooling model for a

    continuous casting machine, Proceeding 6th Internation-

    al Rolling Conference, Dusseldorf, Germany, 1994.

    [15] Y. Zhai, Y. Li, B. Ma, C. Yan, Z. Jiang, The optimi-

    sation of the secondary cooling water distribution with

    improved genetic algorithm in continuous casting of

    steels. 19 (2015) 26-31. https://doi.org/10.1179/143289

    1715Z.0000000001362.

    [16] K. Worapradya, P. Thanakijkasem. Optimum spray

    cooling in continuous slab casting process under produc-

    tivity improvement, IEEE International Conference on

    Industrial Engineering and Engineering Management,

    Hong Kong, 2009.

    [17] D. Słota, Identification of the cooling condition in

    2-D and 3-D continuous casting processes, Numerical

    Heat Transfer Part B: Fundamentals. 2 (2009) 155-176.

    https://doi.org/10.1080/10407790802605232.

    [18] B. Filipic, E. Laitinen, Model-based tuning of pro-

    cess parameters for steady-state steel casting, Informati-

    ca an international journal of computing and informatics.

    29 (2005) 2005 491-496.

    [19] K. Cho, B. Kim, Numerical analysis of secondary

    cooling in continuous slab casting, Journal of Materials

    Science and Technology. 24(2008) 389-390. https://doi.

    org/10.1016/S0924-0136(01)00654-9.

    [20] F. Camisani-Calzolari, I. Craig, P. Pistorius, Specifica-

    tion framework for control of the secondary cooling zone

    in continuous casting, ISIJ international. 38 (1999) 7131-

    1. https://doi.org/10.2355/isijinternational.38.447.

    [21] J. Zhang, D. Chen, C. Zhang, S. Wang, W. Hwang,

    Dynamic spray cooling control model based on the track-

    ing of velocity and superheat for the continuous casting

    steel, Journal of Materials Processing Technology. 229

    (2016) 651-658. https://doi.org/10.1016/j.jmatpro-

    tec.2015.10.015.

    [22] N. Cheung, A. Garcia, The use of a heuristic search

    technique for the optimization of quality of steel bil-

    lets produced by continuous casting, Engineering Ap-

    plications of Artificial Intelligence. 14 (2001) 229-238.

    https://doi.org/10.1016/S0952-1976(00)00075-0.

    [23] D. Van der Spuy, I. Craig, P. Pistorius, An optimi-

    zation procedure for the secondary cooling zone of a

    continuous billet caster, Journal of the Southern African

    Institute of Mining and Metallurgy. 99 (1999) 49-54.

    https://hdl.handle.net/10520/AJA0038223X_2613.

    80

    [24] T. Mauder, C. Sandera, J. Stetina, Optimal control

    algorithm for continuous casting process by using fuzzy

    logic, Steel Research International. 86 (2015) 785-798.

    https://doi.org/10.1002/srin.201400213.

    [25] Y. Wang, X. Luo, Y. Yu, Q. Yin, Evaluation of

    heat transfer coefficients in continuous casting under

    large disturbance by weighted least squares Leven-

    berg-Marquardt method, Applied Thermal Engineering.

    111 (2017) 989-996. https://doi.org/10.1016/j.applther-

    maleng.2016.09.154.

    [26] Y. Yu, X. Luo, Estimation of heat transfer coeffi-

    cients and heat flux on the billet surface by an integrated

    approach, International Journal of Heat and Mass Trans-

    fer. 90 (2015) 645-653. https://doi.org/10.1016/j.ijheat-

    masstransfer.2015.07.008.

    [27] T. Männikkö and M. Mäkelä, Nonsmooth penalty

    techniques in control of the continuous casting process,

    in: P. Neittaanmaki (eds), Numerical Methods for Free

    Boundary Problems, Springer-Basel AG, 1991, pp.297-

    1. https://doi.org/10.1007/978-3-0348-5715-426.

    [28] B. Lally, L. Biegler, H. Henein, Optimization and

    continuous casting: Part II Application to industrial cast-

    ers, Metallurgical Transactions B. 22 (1991) 649-659.

    https://doi.org/10.1007/BF02679020.

    [29] S. Louhenkilpi, E. Laitinen, R. Nieminen, Real-time

    simulation of heat transfer in continuous casting, Metal-

    lurgical Transactions B. 24 (1993) 685-693. https://doi.

    org/10.1007/BF02673184.

    [30] M. Bellet, L. Salazar-Bbetancourt, O. Jaouen, F.

    Costes, Modelling of water spray cooling Impact on ther-

    momechanics of solid shell and automatic monitoring to

    keep metallurgical length constant, European continuous

    casting conference (8th ECCC), Austrian society for met-

    allurgy and materials, 2014.

    [31] R. Tavakoli, Smooth modeling of solidification

    based on the latent heat evolution approach, The Interna-

    tional Journal of Advanced Manufacturing Technology,

    88 (2017) 3041-3052. https://doi.org/10.1007/s00170-

    016-9012-7.

    [32] M. Sadat, A. H. Gheysari, S. Sadat, The effects of

    casting speed on steel continuous casting process, Heat

    and mass transfer. 47 (2011) 1601-1609. https://doi. org/10.1007/s00231-011-0822-8.

    [33] E. Majchrzak, Numerical simulation of continuous

    casting solidification by boundary element method, En-

    gineering Analysis with Boundary Elements. 11 (1993)

    95-99. https://doi.org/10.1016/0955-7997(93)90028-J.

    [34] Z. Han, D. Chen, K. Feng, M. Long, Development

    and application of dynamic soft-reduction control model

    to slab continuous casting process, ISIJ international. 50

    (2010) 1637-1643. https://doi.org/10.2355/isijinterna-

    tional.50.1637.

    [35] M. Alizadeh, A. J. Jahromi, O. Abouali, A new

    semi-analytical model for prediction of the strand surface

    temperature in the continuous casting of steel in the mold

    region, ISIJ international. 48 (2008) 161-169. https://doi.

    org/10.2355/isijinternational.48.161.

    [36] A. Pourfathi, R. Tavakoli, Thermal optimization of

    secondary cooling systems in the continuous steel cast-

    ing process, International Journal of Thermal Sciences.

    183 (2023) 107860. https://doi.org/10.1016/j.ijthermals-

    ci.2022.107860.

    [37] Y. Yu, X. Luo, H. Y. Zhang, Q. Zhang, Dynamic op-

    timization method of secondary cooling water quantity in

    continuous casting based on three-dimensional transient

    nonlinear convective heat transfer equation, Applied

    Thermal Engineering. 160 (2019) 113988. https://doi.

    org/10.1016/j.applthermaleng.2019.113988.

    [38] S. Chaudhuri, R. Singh, K. Patwari, S. Majumdar,

    1. Ray, A. Singh, N. Neogi, Design and implementation

    of an automated secondary cooling system for the contin-

    uous casting of billets, ISA transactions. 49 (2010) 121-

    1. https://doi.org/10.1016/j.isatra.2009.09.005.

    [39] S. Lalitha, S. Chattopadhyay, S. Das, K. Godiwal-

    la, Simulation of heat transfer in the continuous casting

    mold, Transactions of the Indian Institute of Metals. 44

    (1991) 89-92.

    [40] J. Dantzig, Ch. Tucker, Modeling in materials pro-

    cessing, Cambridge university press, 2001.

    [41] K. Spitzer, K. Harste, B. Weber, P. Monheim, K.

    Schwerdtfeger, Mathematical model for thermal tracking

    and on-line control in continuous casting, ISIJ interna-

    tional. 32 (1992) 848-856. https://doi.org/10.2355/isijin-

    ternational.32.848.