سینتیک تبلور مجدد فولاد ضد زنگ 316L فرآوری شده با روش ECAP

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه فردوسی مشهد، مشهد، ایران

کلیدواژه‌ها

موضوعات


  1. [1] R. Z. Valiev and T. G. Langdon, Principles of

    Equal-Channel Angular Pressing as A processing tool

    for grain refinement, progress in materials science:

    51, (2006), 881–981. https://doi.org/10.1016/j.pmats-

    ci.2006.02.003.

    [2] I. Kim, J. Kim, D.H. Shin, Effects of grain size

    and pressing speed on the deformation mode of com-

    mercially pure Ti during equal channel angular press-

    ing, Metallurgical and Materials Transactions: A. (2003),

    1555–1558. https://doi.org/10.1007/s11661-003-0267-x.

    [3] T.G. Langdon, M. Furukawa, M. Nemoto, Using

    equal-channel angular pressing for refining grain size,

    The Journal of The Minerals, Metals & Materials Soci-

    ety (TMS): 52, (2000), 30–33. https://doi.org/10.1007/

    s11837-000-0128-7

    [4] A.F. Padilha, R. Lesley, Plaut, and P. Rangel Rios, An-

    nealing of cold-worked austenitic stainless steels, ISIJ in-

    ternational: 43(2), (2003), 135-143. https://doi:10.2355/

    isijinternational.43.135.

    [5] S.V. Dobatkin, V.F. Terent, W. Skrotzki, Struc-

    ture and fatigue properties of 08Kh18N10T steel after

    equal-channel angular pressing and heating, Russian Met-

    allurgy: 2012, (2012), 954–962. https://doi.org/10.1134/

    S0036029512110043

    [6] S. V. Dobatkin, D. V. Prosvirnin, and G. I. raab, En-

    hanced mechanical and service properties of ultrafine grained copper-based alloys with Cr, Zr, and Hf addi-tives, materials science: 3, no. 1 (2017), 3-5.

    [7] M.J. Sohrabi, M. Naghizadeh, and H. Mirzadeh,

    Deformation-induced martensite in austenitic stainless

    steels, Archives of Civil and Mechanical Engineering:

    20, (2020), 1-24. https://doi.org/10.1007/s43452-020-

    00130-1.

    [8] Li. Jiansheng, et al. Superior strength and ductility

    of 316L stainless steel with heterogeneous lamella struc-

    ture, Journal of Materials Science: 53.14, (2018), 10442-

    1. https://doi.org/10.1007/s10853-018-2322-4.

    [9] S.V. Dobatkin, W Skrotzki, and E.V. Zolotarev,

    Structural changes in metastable austenitic steel during

    equal channel angular pressing and subsequent cyclic

    deformation Materials Science and Engineering:

    1. 723, (2018), 141-147, https://doi.org/10.1016/j.

    msea.2018.03.018.

    [10] M. Calmunger, G. Chai, R. Eriksson, et al. Charac-

    terization of Austenitic Stainless Steels Deformed at El-

    evated Temperature, Metall Mater Trans: A. 48, (2017),

    4525–4538. https://doi.org/10.1007/s11661-017-4212-9.

    [11] X. Wang, D. Wang, J. Jin, J. Li, Effects of rhenium

    on the microstructure and creep properties of novel

    nickle-based single crystal superalloys, Materials Sci-

    ence and Engineering: A. 761, (2019), 138042. https://

    doi.org/10.1016/j.msea.2019.138042.

    [12] T. Sakai, A. Belyakov, R. Kaibyshev, Dynamic and

    post-dynamic recrystallization under hot, cold and severe

    plastic deformation, conditions Progress in Materials

    Science: 60, (2014),130-207. https://doi.org/10.1016/j.

    pmatsci.2013.09.002

    [13] Y. H. Zhao, Y. T. Zhu, Z. Horita and T. G. Langdon,

    Grain growth and dislocation density evolution in a nano-

    crystalline Ni–Fe alloy induced by high-pressure torsion,

    Scripta Materialia: 64 (2011), 327–330. doi:10.1016/j.

    scriptamat.2010.10.027.

    [14] F. J. Humphreys and M. Hatherly: Recrystallization

    and Related Annealing Phenomena, 1995.

    [15] M. Askari Khan-abadi, M.H. Farshidi, and M.H.

    Moayed, Microstructure Evolution of the Stainless

    Steel 316L Subjected to Different Routes of Equal

    Channel Angular Pressing, Iranian Journal of Materials

    Forming: 8.2 (2021): 4-11. https://doi: 10.22099/

    IJMF.2021.38714.1169.

    [16] D. Mandal and I. Baker, on the effect of fine sec-

    ond-phase particles on primary recrystallization as a

    function of strain, Acta materialia: 45.2 (1997): 453-

    1. https://doi.org/10.1016/S1359-6454(96)00215-7.

    [17] A. Burbelko, E. Fraś, and W. Kapturkiewicz, About

    Kolmogorov’s statistical theory of phase transforma-

    tion, Materials Science and Engineering: A. 413, (2005),

    429-434. https://doi.org/10.1016/j.msea.2005.08.161

    [18] J. E. Bailey and P.B. Hirsch, The recrystallization

    process in some polycrystalline metals, Proceedings of

    the Royal Society of London. Series A. Mathematical and Physical Sciences: 267.1328 (1962): 11-30. https://doi.org/10.1098/rspa.1962.0080

    [19] M. Oyarzábal, A. Martínez and I. Gutiérrez, Effect

    of stored energy and recovery on the overall recrystalliza-

    tion kinetics of a cold rolled low carbon steel, Materials

    Science and Engineering: A. 485.1-2 (2008): 200-209.

    https://doi.org/10.1016/j.msea.2007.07.077.

    [20] A. Martınez-de-Guerenu and et al. Recovery during annealing in a cold rolled low carbon steel, Part I: Kinetics and microstructural characterization, Acta materialia: 52.12 (2004), 3657-3664. https://doi.org/10.1016/j.actamat.2004.04.019

    [21] E. A. Grey and G. T. Higgins, Solute limited grain boundary migration: A rationalisation of grain growth, Acta Metallurgica: 21.4 (1973): 309-321. https://doi.org/10.1016/0001-6160(73)90186-7.