Evaluation of Nitrogen Diffusion in Plasma Nitrided Iron by Various

Document Type: Research note


1 Department of Materials Engineering, Maleke-ashtar University of Technology, 83145-115, Iran

2 Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran


   Diffusion of nitrogen in plasma nitrided iron and structural evolution during the nitriding process were evaluated by several characterization techniques including optical microscopy (OM), microhardness depth profiling (HDP), scanning electron microscopy (SEM), x-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), and secondary ion mass spectroscopy (SIMS). Plasma nitriding was carried out on high purity iron substrate at a temperature of 550oC in an atmosphere of 75%H2-25%N2. Case depth, thickness of the compound layer, micro-hardness profile, nitrogen depth profile, and characteristics of intermediate nitrides including epsilon, gamma prime, and Fe16N2 were studied. The results of characterization of plasma nitrided iron indicated a good agreement with experimental findings; thus, the techniques confirmed one another. For accurate measurement of nitrogen within the diffusion zone, where concentration was below 0.1wt%, secondary ion mass spectroscopy technique was used. The extent of nitrogen diffusion detected by secondary ion mass spectroscopy in this work was greater than 1800 μm; a value which is not reported in the literature.


[1] ASM Committee on Nitriding, Basic coverage of conventional (nitriding) process, in: Source book on nitriding.Metals   Park,OH: ASM, 1977, 107.

[2] L. C. Gontijo, R. Machado, E. J. Miola, L. C. Casteletti, P. A. P. Nascente, Surf. Coat. Tech. 183 (2004), 10.

[3] T. Hirsch, T. G. R. Clarke, A. da Silva Rocha, Surf. Coat. Tech., 201 (2007), 6380.

[4] J. Agren, Metall. Mater. Trans. A, 10A (1979), 1847.

[5] K. Frisk, Calphad, 11 (1987), 127.

[6] K. Frisk, Calphad, 15 (1991), 79.

[7] H. Du, J. Phase Equilib., 14 (1993), 682.

[8] H. A. Wriedt, N. A. Gokcen, R. H. Nafziger, Bulletin of Alloys Phase Diagrams,     8 (1997), 355.

[9] S. Malinov, A. J. Bottger, E. J. Mittemeijer, M. I. Pekelharing, M. A. J. Somers, Metall. Mater. Trans. A, 32 (A), 2001, 59.

[10] B. J. Lee, T. H. Lee, S. J. Kim, Acta Mater., 54 (2006), 4597.

[11] G. W. Malaczynski, C. H. Leung, A. A. Elmoursi, A. H. Hamdi, A. B. Campbell, M. P. Balogh, M. C. Militello, S. J. Simko, R. A. Waldo, Mater. Sci.Eng., 289 (1999), 262.

[12] E. J. Mittemeijer, M. A. J. Somers, Surf.Eng., 13 (1997), 483.

[13] H. Du, M. A. J. Somers, J. Agren, Metall. Mater. Trans. A, 31 A (2000), 195.

[14] S. R. Hosseini, F. Ashrafizadeh, Proc. of 7th Seminar on Heat Treatment & Surface Engineering, Isfahan, Iran, (2006), 1591.

[15] S. R. Hosseini, A. Kermanpur, F. Ashrafizadeh, Proc. of the 8th Seminar on Heat Treatment & Surface Engineering, Kerman, Iran, (2007), 571.

[16] S. R. Hosseini, F. Ashrafizadeh, A. Kermanpur, Proc. of the 8th Seminar on Heat Treatment & Surface Engineering, Kerman, Iran, (2007), 563.

[17] Y. Sun, T. Bell, Heat Treat. Met. 24 (1997), 43.

[18] T. Bell, Y. Sun, Proc. of 5th world Seminar on Heat Treatment & Surface Engineering, Isfahan, Iran, (1995), 21.

[19] S. R. Hosseini, M. Salehi, Proc. of 5th World Seminar on Heat Treatment & Surface Engineering, Isfahan, Iran, (1995), 81.

[20] M. Salehi and S. R. Hosseini, Surf.Eng., 12 (1996), 221.

[21] P. G. Shewmon, Diffusion in Solids.,2nd ed.,McGraw-Hill,New York, (1996), 164.