Using Finite Point Method for the Numerical Simulation of Heat Transfer Coupled with Microsegregation during Continuous Casting

Document Type: Research Paper

Authors

1 Department of Materials Science and Engineering, International Center for Science, High Technology & Environmental Sciences, Kerman, Iran

2 Department of Materials Science and Engineering, Shiraz University, Shiraz, Iran

Abstract

In the present work, a meshless method called Finite Point Method (FPM) is developed to simulate the solidification process of a continuously cast steel bloom in both primary and secondary cooling regions. The method is based on the use of a weighted least-square interpolation procedure. A transverse slice of the bloom moving at casting speed is considered as the computational domain and two dimensional heat transfer equations are solved in the computational domain. The present FPM-thermal analysis is coupled with the microsegregation model and used to investigate the capability of the FPM for use in hot tearing study. This hypothesis is verified by comparing surface temperatures simulated by both FPM (the method proposed in this study) and finite volume method (FVM) (the conventional method). Also the simulated surface temperatures are compared with thermography measurements. The results reveal that the proposed FPM can be used successfully both for the simulation of steel bloom to determine its temperature field and for hot tearing study.

Keywords


[1] B. G. Thomas: ISS, Warrendale, PA, (2001), 3.

[2] N. Cheung and A. Garcia, Eng. Appl. Artif. Intel., 14 (2001), 229.

[3] H. Wang, G. Li, Y. Lei, Y. Zhao, Q. Dai and J. Wang, ISIJ Int., 45 (2005), 1291.

[4] Toshihiko Emi, The Making Shaping and Treating of Steel-Casting, ed. A. W. Cramb (AISE Steel Foundation, Pittsburgh, 11th Edition, (2003), 2.

[5] S. Qiu, H. Liu, S. Peng and Y. Gan, ISIJ Int., 44 (2004), 1376.

[6] H. Yang, L. Zhao, X. Zhang, K. Deng, W. Li and Y. Gan, Metall. Mater. Trans. B, 29 (1998), 1345.

[7] J. Konishi, M. Militzer, J. K. Brimacombe and I. V. Samarasekera, Metall. Mater. Trans. B, 33 (2002), 413.

[8] M. M. Hamdi, H. Combeau and G. Lesoult, Int. J. Numer. Method. H., 9 (1999), 296.

[9] Gui R. Liu: Mesh Free Methods, CRC, New York, (2003), 19.

[10] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl, Comput. Method. Appl. M., 139 (1996), 3.

[11] E. Onate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor and C. Sacco, Comput. Method. Appl. M., 139 (1996), 315.

[12] E. Onate, S. Idelsohn, O. C. Zienkiewics and R. L. Taylor, Int. J. Numer. Method. Eng., 39 (1996), 3839.

[13] L. Zhang, Y. M. Rong, H. F. Shen and T. Y. Huang, J. Mater. Proc. Tech., 192- 193 (2007), 511.

[14] S. Louhenkilpi, J. Miettinen, L. Holappa, ISIJ Int. 46 (2006), 914.

[15] M. Alizadeh, A.J. Jahromi and O. Abouali, Comput.. Mater. Sci., 44 (2008), 807. 

[16] R. A. Hardin, K. Liu, A. Kapoor and C. Beckermann, Metall. Mater. Trans. B, 34(2003), 297.

[17] Y. Won, B. G. Thomas, Metall. Mater. Trans. A, 32 (2001), 1755.

[18] C. Bernhard, R. Pierer, C. Chimani, Proc. of 5th Decennial Int. Conf. on Solification Processing, Sheffield, UK, (2007), 525.

[19] C. Bernhard, R. Pierer, A. Tubikanec, C. Chimani, Proc. of the CCR’04 – Continuous Casting and Hot Rolling Conference, Linz, Austria, (2004) 6.3.

[20] Y. M. Won, H. N. Han, T. Yeo, K. H. Oh, ISIJ Int., 40 (2000), 129.