Kinetics of Ceramic Phase Crystallization in a Glass Derived from Wastes of Iron and Steel Industry

Document Type : Research Paper


1 Department of Metallurgy and Materials Engineering, Hamedan University of Technology, Hamedan, 65155-579, Iran

2 Department of Materials Engineering, Isfahan University of Technology, Isfahan,8415683111, Iran


Intensified environmental regulations have posed numerous challenges in the disposal of industrial wastes. The steel industry is one of the biggest production industries, with a considerable amount of daily wastes. Production of glass-ceramic from the steel industry waters is one of the proper solutions for this problem. In this study, the application utilization of different wastes (such as blast-furnace slag, converter slag, and dust) as the raw material for glass-ceramic production was evaluated. After mixing the precursors, the mixture was melted at 1450℃. The obtained melt was cooled down at 10°C/min cooling rate in metallic molds, and the glass was derived. Ceramic phases were grown by application of isothermal heat treatment periods up-to 6 h, at 750, 800, 850, and 900℃. The mean length of the ceramic phases was measured after each heat treatment period by scanning electron microscopy. It was shown that crystal growth followed a parabolic kinetic model. The activation energy of crystallization was also determined as 129 kJ/mol in the temperature range of 750-900°C.


  1. Upadhyaya, G. S. Holland W., Beall G.: Glass-ceramic technology,"The American Ceramic Society", Westerville, OH, USA, 2002, pp. 372. Sci. Sinter. 36, 215–216 (2004).
  2. Khater, G. A., Abdel-Motelib, A., El Manawi, A. W. & Abu Safiah, M. O. Glass-ceramics materials from basaltic rocks and some industrial waste. J. Non. Cryst. Solids 358, 1128–1134 (2012).
  3. Pavlovic, M. et al. Cavitation wear of basalt-based glass ceramic. Materials (Basel). 12, (2019).
  4. Gomes, V., De Borba, C. D. G. & Riella, H. G. Production and characterization of glass ceramics from steelwork slag. J. Mater. Sci. 37, 2581–2585 (2002).
  5. Rawlings, R. D., Wu, J. P. & Boccaccini, A. R. Glass-ceramics: Their production from wastes-A Review. Journal of Materials Science 41, 733–761 (2006).
  6. Kamusheva, A., Hamzawy, E. M. A. & Karamanov, A. Crystallization and structure of glass-ceramic from electric arc furnace slag Use of Sinai basaltic rocks for the production of glass-ceramic materials View project nothing View project CRYSTALLIZATION AND STRUCTURE OF GLASS-CERAMIC FROM ELECTRIC ARC FURNACE SLAG. Journal of Chemical Technology and Metallurgy 50, (2015).
  7. Choi, M. W. & Jung, S. M. Elucidation of the crystallisation mechanism of iron oxide-devoid BOF slag melt. Ironmak. Steelmak. 45, 441–446 (2018).
  8. Shin, D. et al. Development of high-strength glass-ceramic materials by utilization of slag discharged from steel-making industry in Korea. Sci. Adv. Mater. 8, 2295–2298 (2016).
  9. Francis, A. A. Conversion of blast furnace slag into new glass-ceramic material. J. Eur. Ceram. Soc. 24, 2819–2824 (2004).
  10. Back, G. S., Park, H. S., Seo, S. M. & Jung, W. G. Exploring high-strength glass-ceramic materials for upcycling of industrial wastes. Met. Mater. Int. 21, 1061–1067 (2015).
  11. Vu, D. H., Wang, K. S., Chen, J. H., Nam, B. X. & Bac, B. H. Glass-ceramic from mixtures of bottom ash and fly ash. Waste Manag. 32, 2306–2314 (2012).
  12. Sutcu, M. et al. Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production. J. Clean. Prod. 233, 753–764 (2019).
  13. Leroy, C., Ferro, M. C., Monteiro, R. C. C. & Fernandes, M. H. V. Production of glass-ceramics from coal ashes. J. Eur. Ceram. Soc. 21, 195–202 (2001).
  14. Erol, M., Küçükbayrak, S., Ersoy-Meriçboyu, A. & Öveçollu, M. L. Crystallization behaviour of glasses produced from fly ash. J. Eur. Ceram. Soc. 21, 2835–2841 (2001).
  15. Cheng, T. W. & Chen, Y. S. Characterisation of glass ceramics made from incinerator fly ash. Ceram. Int. 30, 343–349 (2004).
  16. Pelino, M. Recycling of zinc-hydrometallurgy wastes in glass and glass ceramic materials. Waste Manag. 20, 561–568 (2000).
  17. Pelino, M., Karamanov, A., Pisciella, P., Crisucci, S. & Zonetti, D. Vitrification of electric arc furnace dusts. Waste Manag. 22, 945–949 (2002).
  18. Nazari, A., Shafyei, A. & Saidi, A. Recycling of electric arc furnace dust into glass-ceramic. Mater. Chem. Phys. 205, 436–441 (2018).
  19. Ghasemi, S. & Shafyei, A. Production and Crystallization Behavior of an Iron Rich Glass–Ceramic Prepared by Ironmaking and Steelmaking Wastes. Int. J. Iron Steel Soc. Iran 14, 17–22 (2017).
  20. Lu, Z., Lu, J., Li, X. & Shao, G. Effect of MgO addition on sinterability, crystallization kinetics, and flexural strength of glass–ceramics from waste materials. Ceram. Int. 42, 3452–3459 (2016).
  21. Shi, J., He, F., Xie, J., Liu, X. & Yang, H. Kinetic analysis of crystallization in Li2O-Al2O3-SiO2-B2O3-BaO glass-ceramics. J. Non. Cryst. Solids 491, 106–113 (2018).
  22. Başaran, C., Canikoğlu, N., Özkan Toplan, H. & Toplan, N. The crystallization kinetics of the MgO–Al2O3–SiO2–TiO2 glass ceramics system produced from industrial waste. J. Therm. Anal. Calorim. 125, 695–701 (2016).
  23. Bai, Z., Qiu, G., Yue, C., Guo, M. & Zhang, M. Crystallization kinetics of glass–ceramics prepared from high-carbon ferrochromium slag. Ceram. Int. 42, 19329–19335 (2016).
  24. McCloy, J. et al. Final report: Understanding influence of thermal history and glass chemistry on kinetics of phase separation and crystallization in borosilicate glass-ceramic waste forms for aqueous reprocessed high level waste. (2018). doi:10.2172/1485494
  25. Švadlák, D., Pustková, P., Koštál, P. & Málek, J. Crystal growth kinetics in (GeS2)0.2(Sb2S3)0.8 glass. Thermochim. Acta 446, 121–127 (2006).
  26. Málek, J., Švadlák, D., Mitsuhashi, T. & Haneda, H. Kinetics of crystal growth of Sb2S3 in (GeS2)0.3(Sb2S3)0.7 glass. J. Non. Cryst. Solids 352, 2243–2253 (2006).
  27. Porter, D. A. & Easterling, K. E. Phase transformation of metals and alloys. (Chapman and Hall, 1982).
  28. Duan, R. G., Liang, K. M. & Gu, S. R. A study on the mechanism of crystal growth in the process of crystallization of glasses. Mater. Res. Bull. 33, 1143–1149 (1998).
  29. Shao, H., Liang, K. & Peng, F. Crystallization kinetics of MgO–Al2O3–SiO2 glass-ceramics. Ceram. Int. 30, 927–930 (2004).
  30. Lee, Y. K. & Choi, S. Y. Controlled nucleation and crystallization in Fe2O3-CaO-SiO2 glass. J. Mater. Sci. 32, 431–436 (1997).
  31. Karamanov, A., Cantalini, C., Pelino, M. & Hreglich, A. Kinetics of phase formation in jarosite glass-ceramic. J. Eur. Ceram. Soc. 19, 527–533 (1999).