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Abstract

Many efforts have been made to model the the hot deformation (dynamic recrystallization) flow curves of different 
materials. Phenomenological constitutive models, physical-based constitutive models and artificial neural network 
(ANN) models are the main methods used for this purpose. However, there is no report on the modeling of warm 
deformation (dynamic spheroidization) flow curves of any kind of steels. In this work, a neural network with feed 
forward topology and Bayesian regularization training algorithm was used to predict the warm deformation flow 
curves of a eutectoid steel. The experimental data was provided by sampling the dynamic spheroidization flow 
curves of the tested steel obtained from warm compression tests conducted over a temperature range of 620-770 
°C with different strain rates in the range of 0.01-10 s-1. To develop the neural network model, the overal data was 
divided into three categries of training, validation and testing. The scatter diagrams together with the root mean 
square error (RMSE) criterion were used to evaluate the prediction performance of the developed model. The low 
calculated RMSE value of 4.15 MPa for the overall data showed the robustness of the developed ANN model in 
predicting the warm deformation flow curves of the tested steel. The results can be further used in the mathematical 
simulation of warm metal forming processes.
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1. Introduction

Deformation at elevated temperatures plays an 
important role in manufacturing materials with the 
required mechanical properties. For this reason, de-
formation parameters such as temperature, strain rate 
and the applied strain must be controlled carefully by 
mathematical simulations. In this regard, modeling 
of flow curves extracted from metal-forming experi-
ments such as compression and torsion by constitutive 
equations is a necessary stage to describe the material 
flow behavior. Hence, considerable researches have 
been conductedto model the flow stress of metals and 
alloys and different constitutive equations have been 
proposed to model the flow stress of different mate-
rials 1-4).

Based on the literature, the constitutive models can 
be divided into three categories including phenome-
nological constitutive models, physical-based consti-
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tutive models, and artificial neural network (ANN) 
models 5). As it is known, the flow curves of the mate-
rials at elevated temperatures are nonlinear and work 
hardening and dynamic softening behaviors often oc-
cur in these flow curves. Therefore, it is very hard to 
show the relationship between deformation parame-
ters and flow stress via an accurate mathematical mod-
el. However, this problem can be effectively solved 
through establishing ANN models. The ANN-based 
model needs neither mathematical model nor defor-
mation mechanism; it is able to directly learn the rules 
of change between the input variables and the output 
variables from testing data, and store these rules into 
weight and threshold values of the network through 
its own good ability of nonlinear mapping. Therefore, 
mathematical formulas are not required to intuitively 
express the relationship between flow stress and pa-
rameters such as strain, temperature and strain rate. 
Furthermore, ANN has a wide applicability. It can ef-
fectively predict the flow stress in the whole scope of 
working deformation 6-10).

In the present research, the capability of ANN was 
evaluated for warm deformation flow curves of some 
eutectoid steel. According to the authors’ knowledge, 
there is no report concerning the modeling of the flow 
curves of eutectoid steel at warm deformation condi-
tions by ANN. Thus, the aim of the present study was 
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to evaluate the ability of ANN models in predicting 
the flow curves during the compression test. 

2. The Experimental Data 

The material used in this study was a 10 mm di-
ameter hot-rolled eutectoid steel rod. Chemical com-
position of the plain eutectoid steel is (in wt. %) 0.82 
C, 0.18 Si, 0.66 Mn, 0.012 P, 0.005 S and 0.003 N 
(SWRH82B-DLP according to JIS G3506 standard). 
The specimens with the height of 10 mm and the di-
ameter of 8 mm were prepared. In order to minimize 
friction and barreling effects due to the existence of 
friction between the anvils and the specimen surface, 
graphite foil was employed as a lubricant. Single-hit 
warm compression tests were performed by employ-
ing a Gleeble1500 thermomechanical simulator. The 
specimens were reheated at the rate of 20 °C/s to the 
deformation temperature of 620, 670, 720 and 770 °C, 
held for 15 s and then compressed to a true strain of 
0.5 at a constant true strain rate of 0.01, 0.1, 1 and 10 
s-1. Smoothed true stress- true strain curves obtained 
at different temperatures and strain rates are depicted 
in Fig. 1. It was obvious that the onset of dynamic 
spheroidization of cementite lamella during warm 
compression, due to the softening effect, could be 
identified by a single peak stress followed by a grad-
ual fall. 

The experimental stress-strain curves obtained at 
different deformation temperatures and strain rates 11) 

were sampled for different strains in the range of 0.01 
to 0.45 and the step size of 0.01. So, a database with 
the input variables of the deformation temperature, 
strain rate and strain, and the output variable of flow 
stress with 720 patterns was prepared. The provided 
data base was used to develop the neural network 
model. It is worth mentioning that, according to the 
deformation condition (Temperature and Strain rate) 
and metallographic observations (As shown in the 
previous research 11), the main mechanism is dynam-
ic spheroidization. Thus, the deformation mechanism 
remains constant with strain rate and temperature. It 
should be noted that the onset of dynamic spheroidiza-
tion during compression, due to the softening effect, 
could be identified by a distinct peak in the stress-
strain curve followed by flow softening (Fig. 1).

3. Bayesian Regularization   Artificia Neural Network

In this section, a brief description about the 
Bayesian regularization artificial neural networks is 
provided. Then, the presented model is developed 
based on the training, validation and testing stages and 
explained with more details in the next parts. Fig. 1. Experimental flow curves of eutectoid steel at 

different warm deformation conditions 1).
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3.1. Architecture of the developed ANN model 

In artificial neural networks, a network of highly 
interconnected processing elements can work together 
to solve a specific problem 12). In this work, a feed 
forward neural network with feed forward topology 
and Bayesian regularization training algorithm was 
used to predict the warm deformation (dynamic 
spheroidization) flow curves of a eutectoid steel. This 
neural network could approximate any function with 
a finite number of discontinuities. For designing these 
networks, one input layer, one or more hidden layers 
with sigmoid transfer functions, and one output layer 
with linear transfer function are often used 13). The 
number of nodes in the input and output layers is equal 
to that of the input and output variables, respectively. 
The number of hidden layers and nodes could be 
obtained through trial and error during training and 
testing the network. 

Here, a three-layer network with logistic sigmoid 
transfer function was designed to predict the warm 
deformation (dynamic spheroidization) flow curves 
of  the tested steel. The flow stress of the tested 
steel at different deformations was a function of the 
variables of temperature, strain rate and strain. So, 
the architecture depicted in Fig. 2 was designed to 
develop the desired neural network model.

Fig. 2. The architecture designed in this research.

3.2. Neural network training, validation and testing

After the construction of the neural network 
structure, a training algorithm should be used to adjust 
the weights and biases of the network iteratively; this 
should be done in a way to minimize the network 
performance function. The common used performance 
function in these neural networks is Mean Square .
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, where ti and yi are the target (actual) and  predicted 
values of the ith pattern of the output variable y, 
respectively, and n is the number of data patterns used 
for training the network. 

  In this work, Bayesian Regularization was 
used for training the network. In the Bayesian 
regularization training algorithm, weights and biases 
are updated with Levenberg-Marquardt optimization 

algorithm and the network generalization can be 
improved by minimizing a combination of MSE and 
the mean square of the network weights. The weights 
are considered as random variables with Gaussian 
distribution 15).

To improve the generalization property of the 
proposed neural network model, the early stopping 
technique was used and the overall data was randomly 
divided into three subsets of training, validation and 
testing. In this technique, training process should be 
stopped when the error for the validation set starts to 
increase. The error value for tests shows if the over 
fitting has occurred or not 16). As mentioned before, 
the prepared data base was composed of 720 patterns, 
from which 432 randomly selected patterns were used 
for training the network. The remaining data were 
divided equally into two subsets to validate and test 
the trained network. 

The neural networks are very sensitive to the 
nodes in hidden layers. The small number of those 
nodes can result in low fitting and the high number 
of over fitting. Here, to assess the effectiveness of the 
network, the scatter diagrams together with the root 
mean square error (RMSE) criterion were used:
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 (Eq. 2)

, where ti is the target output, yi is the model output 
and n is the number of data patterns. After some trial 
an error, it was found that the network with 40 nods in 
the hidden layer had the least error for the test data and 
increasing the number of these nodes did not improve 
the network results for training data. 

4. Results and Discussion

The results of the developed Bayesian 
regularization neural network model for training, 
validating and testing the overall data patterns are 
presented in Fig. 3 in the form of scatter diagrams. 
As can be seen, there was an excellent agreement (with 
the correlation coefficient value of R = 0.9996 for the 
overall data) between the predicted and measured flow 
stresses.

Furthermore, the low RMSE values of 3.70, 4.06, 
5.36 and 4.15 Mpa, which were obtained for training, 
validating and testing the overall data, respectively, 
evidencedthe excellent agreement. A comparison 
between the experimental and modeled flow curves 
(using the developed neural network) at different 
warm deformation conditions is presented in Fig. 4.

As shown, the flow curves of the tested steel 
at different warm deformation conditions could be 
followed smoothly by the neural network. Also, it 
could be observed that both hardening and softening 
behavior of the flow curves can be modeled effectively.
The overall results showed the high and effective 
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performance of the developed neural network model 
for the prediction of dynamic spheroidization flow 
curves of the tested eutectoid steel.

Fig. 3. The results of the developed Bayesian 
regularization neural network model for training, 
validating and testing the overall data patterns.

Fig. 4. The comparison between the experimental and 
modeled flow curves (using the developed Bayesian 
regularization neural network) at different tested 
warm deformation conditions.
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5. Conclusions

In this research, the warm deformation flow stress 
of eutectoid steel was predicted using a Bayesian reg-
ularization neural network. The flow curves obtained 
from single hit compression testing at different warm 
deformation conditions were sampled. Consequent-
ly, a database with the input variables of deformation 
temperature, strain rate and strain, and the output 
variable of flow stress was obtained. Accordingly, the 
Bayesian regularization neural network model was de-
veloped to model the hot deformation flow curves of 
the tested steel. The low RMSE values of 3.70, 4.06, 
5.36 and 4.15 Mpa, which were obtained respective-
ly for training, validating and testing and the overall 
data, respectively, showed the robustness of the de-
veloped ANN model in predicting the warm deforma-
tion flow curves of the tested steel. In addition, it was 
found that the dynamic sphearoidization mechanism 
during warm deformation of eutectoid steel could be 
modeled by the developed ANN model. 
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