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Artificial neural network models for production of nano-grained structure
in AISI 304L stainless steel by predicting thermo-mechanical parameters

F. Forouzan'’, A. Najafizadeh?, A. Kermanpur® and A. Hedayati*
Department of Materials Engineering,IsfahanUniversity of Technology,Isfahan 84156-83111,Iran

Abstract

An artificial neural network (ANN) model is developed for the analysis, simulation, and prediction of the
austenite reversion in the thermo-mechanical treatment of 304L austenitic stainless steel. The results of the ANN
model are in good agreement with the experimental data. The model is used to predict an appropriate annealing
condition for austenite reversion through the martensite to austenite transformation. This model can also be used
as a guide for further grain refining and to improve mechanical properties of the AISI 304L stainless steel.
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1. Introduction

Austenitic stainless steels (ASSs) have good
corrosion resistance and ductility. However, the
yield strength of these steels is relatively low in
the annealed state.” There are various
strengthening mechanisms for ASSs such as
grain refining, transformation strengthening and
work hardening while they cannot be hardened
by heat treatment.>* However, grain refinement
is the only method which improves both strength
and toughness simultaneously.

Austenite phase in ASSs is not a stable phase in
the general case and this fact holds particularly
for the 300 steel series. Two types of martensite;
namely, a' (bcc, ferromagnetic) and ¢ (hcp, non-
ferromagnetic), can be produced by cold
deformation. The deformation and the content of
strain-induced martensite depends upon the
austenite stability (chemical composition and
initial austenite grain size) and cold deformation
conditions (the amount of deformation,
deformation temperature, strain and strain
rate).*?

One of the best methods to obtain ultra-fine
austenite grains in ASSs is a thermo-mechanical
process consisting of conventional cold rolling
and annealing. In this process, the austenite
phase should be almost completely transformed
to strain-induced o'-martensite by heavy cold
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rolling at low temperatures, and subsequently strain—
induced o'-martensite phase should be completely
reverted to ultra fine austenite grains by annealing.
Key points in this thermo-mechanical process are as
follows:Firstly, the strain-induced o'-martensite
should be further heavily

deformed during cold rolling so that any lath o'-
martensite structure is destroyed prior to reversion
treatment.

This means that additional cold working after o'-
martensite saturation leads to a higher capability for
obtaining finer austenite grains.

Secondly, the strain-induced and deformed o'-
martensite should be reverted to austenite at
temperatures as low as possible to suppress grain
growth of reverted austenite Fig.1.>'?

Therefore, mechanical properties of austenitic
stainless steel is a complex function of deformation
temperature and annealing conditions, and it is very
difficult to develop a complete mathematical model
to predict the final properties of this steel after
austenite reversion. An engineering approach to
predict the properties of ASSs is based on
utilization of artificial neural networks (ANNs). A
neural network acts like a learning machine that
enables us to model the hidden input— output
relationships accurately. Several attempts have been
made to predict the martensite content of these
steels after cold work (by tensile test) and reversion
of strain-induced o'-martensite to austenite using
neural network.'"™"?

In this work, the effects of annealing conditions on
the reversion of o'-martensite to austenite in the
cold rolled AISI 304L stainless steel at two cold
rolling temperatures in a wide range of conditions
are investigated and modeled as a guide map by
ANNS.
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Fig.1. Thermo-mechanical treatment to achieve ultrafine grains in metastable austenitic stainless steels. A

and Ay are the reversion start and finish temperatures, respectively.

2. Materials and Methods

The chemical composition of the studied industrial steel
sheet is given in Table 1. The sheet material was cold
rolled at -15 and 0°C with inter-pass cooling up to 90%.
Deformed specimens were then annealed at temperature
ranges of 650-900 °C from 5 seconds to 8§ hours.
Specimens for o’-martensite measurements were cut
from the strained sheets with an abrasive cutting
machine and the edges of the specimens were finished
with SiC emery paper. A Ferritscope (Helmut Fischer
GmbH, model MP30E) was used for the quantification
of o’-martensite phase.

The device was calibrated with o&-ferrite standard
specimens and the results were converted to the a'-
martensite contents.'” The microstructures were studied
using a Scanning Electron Microscope (SEM Philips
X230).Prior to this study, the specimen surfaces were
electropolished by using an electrolyte (200 ml
perchloric acid, 800 ml ethanol) at 30 V for 30 s. The
specimens were electroetched with an electrolyte at 20
V for 30 s. Electrolytic etching with a mixture of 60 ml
nitric acid and 40 ml distilled water was used to reveal
the austenite grain boundaries. The etching was carried
out at 1.0 V for about 8 minutes.

3. Theory/Calculation

ANN modeling follows these steps: determination of
input/output parameters; collection of data; analysis of
the data; training and testing of the neural network; and
using the trained network for simulation and prediction.

Model training includes the choice of architecture,
training algorithms and parameters of the network."”

3.1. Database
In the case of cold-rolled steel sheets, the most
important parameters of heat treatment, which dictate
microstructure and mechanical properties of ASSs, are
the annealing time and temperature used as the input
data.
A total number of 140 data based on thermo-mechanical
tests were considered for the analysis. Cold reduction
was 90% and the rolling temperature was -15 and 0 °C
(all of them below My temperature).These values were
called subzero and zero temperatures, respectively. Data
were divided into three groups, 50% for the training set,
25% for the validation set, and 25% for the test set. In
this study, the validation set was used to control the
training process and the testing set was used to evaluate
the generalization ability of the trained network. The
volume fraction of strain-induced martensite values
used as output data in two networks were normalized to
bound the values to the set [0, 1] using the following
formula:
Xy = & (1)

X max X min
Where Xy is the normalized value of variable X with
maximum and minimum values given by Xi,,x and Xy,

Table 1. Chemical composition of 304L austenitic stainless steel (Weight Percent).

Type C Si Mn Cr

Ni Cu Mo Nb Fe

304L | 0.0269 | 0.427 | 1.58

18.2

822 | 0.58 | 0.348 | 0.0020 | base




3.2. Network architecture

Feed forward networks often have one or more
hidden layers of sigmoid neurons followed by an
output layer of linear neurons. Multiple layers of
neurons with nonlinear transfer functions allow the
network to learn nonlinear and linear relationships
between input and output vectors. For multiple-layer
networks the number of layers determines the
superscript on the weight matrices.'®

Figure 2 represents the structures of neural networks
modeled in this work schematically. As Hornik et
al.'” have shown, an ANN with one hidden layer
with sigmoid transfer function (logarithm sigmoid or
hyperbolic tangent)can approximate any function, the
three-layered neural network (one input, one hidden,
and one output layer) was used in the present work
for both of the models. Often the back-propagation
method is used to train ANNSs, in which the gradient
is computed for nonlinear multilayer network.
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Fig. 2. Neural network architectures modeled in this
work.

3.3. Network training

The neural networks used in our study are the
supervised multilayered feed-forward back-propagation
network trained with Levenberg — Marquardt (LM)
algorithm which is the fastest training algorithm for
networks of moderate size.'”

The inputs p; are multiplied by weights w; for a
hidden node n;. Then, the weighted sum of wjp; is
added to a bias value b; and finally operated by a
suitable transfer function (f). The operation can be
written as:

nj=f(2wﬁpi+bﬁ) (2)
A hyperbolic tangent function was used here as the
transfer function as follows:

1—expl—ap, +c
i(n) - Lexplap, +c) 3)

I+ exp(— op; + c)
Where o and ¢ are constants. In order to find out the
appropriate network architecture,similar operations
are repeated for the hidden layers. The hidden layers

contribute to the neuron output through a linear
function. The outgut can be written as:

— ’
a (ijnj +b

4)

Where w; and b’ are new sets of
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weight and bias values. The appropriate notation is
used in the two-layered tansig/purelin network shown
in Fig 3.
Input Hidden layer Output layer

tasing purelin

: ®®+

Fig. 3. Schematic diagram of the ANN model for
prediction of properties of AISI304L steel after
annealing.
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4. Result and discussion

4.1. Model performance

It is usefulto plot the training, validation, and test
errors in order to check the progress of training. To
make sure that the network does not end at a local
minimum value, it is necessary to plot the error
function versus the number of epochs. This is shown
in Fig. 4 where the error is represented by the mean
square errors (MSE) which is presented as:

1 & 2
MSE:_Z(yi_ti) (5)
NS
Where ¢ is the target output and y; is the network
output.
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Fig. 4. Error function versus the number of epochs to
schematic representation of the stopping technique
used in this work.

As the number of cycles increases, the error
decreases until about 17 cycles and then it increases.
Different training options, such as training on
variations of mean square error for better
generalization, training against a validation set, and
training until the gradient of the error reaches a
minimum, have been attempted in order to get the
best result.

Superior performance of the ANN model was
achieved by changing the parameters of modeling
described above. The performance of the resulting
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model on different datasets, namely, training,
validation, testing, and the entire data are shown in
Fig. 5. It shows the linear regression between the
network output and the corresponding data for
subzero reversion network model. For all other
trained networks, the outputs trace the targets very
well. The main source of deviation was the
mentioned contradiction in the experimental data.'”’
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Table 2 shows that similar performance is achieved
for another network used for the simulation of the
reversion of zero specimens. As can be seen,R-
values(The R-value relates the goodness of the fit of
the line. R-values closer to +1 or -1 indicate a better
fit than values closer to 0.)for all cases of training,
validation, and test data sets were above 0.95.
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Fig. 5. Performance of ANN Subzero Reversion model for training, validation, testing data and all data,

respectively.

Table 2. Network results for training algorithms used in this work.

Neural Network

The best architecture

Mean square error

R in linear regression

Subzero reversion model

2-5-1

0.25

0.98

Zero reversion model

2-6-1

0.307

0.97




4.2. Modeling of reversion

Reversion of austenite from o’-martensite has been
analyzed during annealing at different temperatures
and times. To increase the mechanical properties of
this type of steel, its microstructure after annealing
must be fully austenitic with nano/submicron grains
sizes. Thus, the temperature and time of annealing
must be designed as low and short as possible to
prevent grain growth of austenite after reversion
treatment. Figure 6(a) shows the ultra fine austenitic
structure after adequate annealing, and Figure 6(b)
shows the grain growth in the structure after extra
annealing.
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Fig. 6. SEM image of the AISI 304L stainless steel
specimen after 90% cold reduction at 0°C.(a) annealed at
800 °C for 2min (b) annealed at 800 °C for 14min.

The effect of annealing conditions on the percentage
of austenite reversion for both rolling temperatures
by using the results of the developed networks is
shown in Fig. 7.a and b. These figures show that
increasing the annealing temperature and duration
lead to increased martensite reversion. Furthermore,
reversion rate increases with the annealing
temperature. As can be seen in these figures, at high
annealing temperatures, the reversion rate at short
annealing time on the reversion process will be
which reversion is complete but it is not too long to
allow grain growth.periods of annealing is high but
rapidly descends by increasing the annealing time so
that the effect of minor, but it is important for
growing the austenite grain size. Therefore, the
optimal point is the time at which reversion is
complete but it is not too long to allow grain growth.

10
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Fig. 7. The effect of annealing temperature and time
on the relative percentage of reversion (a) cold
rolled at -15°C, (b) cold rolled at 0 °C.

Contour lines of the percentage of reversed austenite
after annealing are illustrated in Fig. 8. These figures
show that the complete reversion at any acceptable
time is only achievable by annealing at temperatures
higher than 750 °C. As can be seen, in lower
temperatures,e.g. 600 and 650°C, the time to reach up
to 90% austenite is very long.

Comparison of rolling at subzero and zero reversion
curves as a function of annealing conditions reveals
the following results:

- In zero temperature rolled specimen, percentage of
the reverted austenite was not adequate in a short
time (until 20 minutes) although the temperature was
very high, but in subzero temperature rolled
specimen at temperatures above 800°C, reversion
was approximately completed in a very short time
(below 10 seconds).

- The high gradient of 90%-contour-line in zero
temperature rolled diagram implies that increasing
the annealing temperature up to 750 °C does not
decrease the annealing time.
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Fig. 8. Contour lines of relative percentage of reversion as a function of annealing temperature and time
(a) coled rolled at -15°C, (b) coled rolling at 0 °C.

However, above 750 °C temperatures, the reversion was
almost complete after 30 minutes. The experimental
retained martensite data measured by Ferritescopeare
also presented by points in Fig 9. As expected, these
two data series agree with each other.

The results presented here showed that the ANN
models can predict the influences of the annealing

time and temperature on retained martensite in the
structure. The ANN models can also be used as a
guide for prediction of optimum annealing time and
temperature according to the required conditions.
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Fig. 9. Comparison of ANN model calculations with experimental values of annealing conditions after (a) cold
rolling at -15°C (b) cold rolling at 0°C.

5. Conclusions

The effect of rolling temperature and annealing
condition on the reversion of strain-induced
martensite to austenite was modeled for AISI 304L
stainless steel by means of artificial neural networks.
The developed model showed that higher annealing
temperature and time resulted in a greater reversion
martensite to austenite. Furthermore, the complete
reversion at any acceptable time was only achievable
by annealing at temperatures higher than 750°C.
Finally, increasing the rolling temperature leads to a
much longer annealing time for complete reversion.
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