Investigation the effect of sol-gel method approach on microstructural of NiO/MgAl2O4 nanocatalysts applicable for steel industry: modified sol-gel method and sol-gel citrate

Document Type : Research Paper


1 Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.

2 Foulad institute of technology assistant professor

3 Department of Mechanical Engineering, School of Engineering, Behbahan Khatam Alanbia University of Technology, Iran.



Nickel-based catalysts have been widely used in the important reaction for producing hydrogen and synthesis gas from methane reforming processes, which use for producing of steel. The aim of this study was to investigate the effect of the sol-gel method approach on the synthesis of NiO/MgAl2O4 nano catalysts through the modified sol-gel and sol-gel citrate methods. Powders are characterized using XRD, SEM-EDS, TEM, and BET-BJH. The results showed that the use of two different sol-gel approaches caused changes in microstructural properties. Nano catalysts prepared by the modified sol-gel method had smaller crystalline size, smaller particle size, larger porosity and larger specific surface area than the prepared nano catalysts by the sol-gel citrate method. The shape of the nano catalyst particles prepared by the two sol-gel methods was spherical, except that the shape and size of the particles were more homogeneous in the prepared nano catalyst by the modified sol-gel method.


[1] Y.H. Wang, H.M. Liua, B.Q. Xu, Durable Ni/MgO catalysts for CO2 reforming of methane: Activity and metal–support interaction, J. Mol. Cata A: Chem. 299 (2009) 44–52.
[2] F. Meng, G. Chen, Y. Wang, Y. Liu, Metallic Ni monolithe Ni/ MgAl2O4 dual bed catalysts for the autothermal partial oxidation of methane to synthesis gas. Int. J. Hyd. Ene. 35(2010) 8182-8190.
[3] J. G. Seo, M. H. Youn, J. Ch. Jung, In. K. Song, Effect of preparation method of mesoporous Ni–Al2O3catalysts on their catalytic activity for hydrogen production by steam reforming of liquefied natural gas (LNG). Int. J. Hyd. Ene. 34 (2009) 5409–5416.
[4] K. M. Kang, H. W. Kim, I. W. Shim, H. Y. Kwak, Catalytic test of supported Ni catalysts with core/shell structure for dry reforming of methane, Fue. Proc. Tech.  92 (2011) 1236–1243
[5] W. Gac, A. Denis, T. Borowiecki, L. Kep. ski, Methane decomposition over Ni–MgO–Al2O3 catalysts, Appl CataA: Gen. 357 (2009) 236–243.
[6] S. Therdthianwong, A. Therdthianwong, C. Siangchin, S. Yongprapat, Synthesis gas production from dry reforming of methane over Ni/Al2O3 stabilized by ZrO2. Int. J. Hyd. Ene. 33 (2008) 991-999.
 [7] F. Frusteri, S. Freni, V. Chiodo, L. Spadaro, O. Di Blasi, G. Bonura, S. Cavallaro, Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell. Appl.Cata A: Gen 270 (2004)1–7.
[8] K. Y. Koo, H.S. Roh, Y. T. Seo, D. J. Seo, W. L. Yoon, S. B. Park, A highly effective and stable nano-sized Ni/MgO–Al2O3 catalyst for gas to liquids (GTL) process, Int. J. Hyd. Ene. 33 (2008) 2036–2043.
[9] K. Y. Koo, H. S. Roh, Y. T. Seo, D. J. Seo, Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process, Appl CataA: Gen. 340 (2008) 183–190.
[10] N. Srisiriwat, S. Therdthianwong, A. Therdthianwong, W. L. Yoon, S. B. Park, Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2–ZrO2, Int. J. Hyd. Ene. 34 (2009) 2224–2234.
[11] S. Therdthianwong, Ch. Siangchin, A. Therdthianwong, Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/CO2 reforming by ZrO2 addition, Fuel. Pro. Tec. 89 (2008) 160–168.
[12] M. Rezaei, F. Meshkani, A. B. Ravandi, B. Nematollahi, A. Ranjbar, N. Hadian, Autothermal reforming of methane over Ni catalysts supported on nanocrystalline MgO with high surface area and plated-like shape. Int. J. Hyd. Ene. 36 (2011) 11712-11717.
[13] H. S. Roh, U.D. Joshi, Y. Sh. Jung, Y. S. Seo, W. L. Yoon, T. W. Lee, H2 production over co-precipitated Ni–MgO–Al2O3 catalysts for direct internal reforming (DIR) in a molten carbonate fuel cell (MCFC), J. Ind. Eng. Chem. 18 (2012) 880–881.
[14] A. Djaidja, S. Libs, A. Kiennemann, A. Barama, Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts, Cata. Tod. 113 (2006) 194–200.
[15] W. Trakarnpruk, Ch. Sukkaew, Preparation of Ni/MgOZrO2 nanocrystals by citrate sol–gel method, J. Allo. Com. 460 (2008) 565–569.
[16] H. Li, H. Xu, J. Wang, Methane reforming with CO2 to syngas over CeO2-promoted Ni/Al2O3-ZrO2 catalysts prepared via a direct sol-gel process, J. Natu. Gas Chem. 20 (2011)1–8
[17] H. Li, J. Wang, Study on CO2 reforming of methane to syngas over Al2O3–ZrO2 supported Ni catalysts prepared via a direct sol–gel process, Chem. Eng. Sci. 59 (2004) 4861–4867
[18] P.G. Savva, K. Goundani, J. Vakros, K. Bourikas, Ch. Fountzoula, D. Vattis, A. Lycourghiotis, Ch. Kordulis, Benzene hydrogenation over Ni/Al2O3 catalysts prepared by conventional and sol–gel techniques, Appl. Cata. B: Env. 79 (2008) 199–207.
[19] J.A. Montoya, E. R. Pascual, C. Gimon, P. D. Angel, A. Monzon, Methane reforming with CO2 over Ni/ZrO2–CeO2 catalysts prepared by sol–gel, Cata. Tod. 63 (2000) 71–85.
[20] A. G.Murillo, F. de J. C. Romo, A.M. Torres Huerta, M.A. Dominguez Crespo, E. Ramirez Meneses, H. Terrones, A. Flores Vela, Microstructural evolution of the system Ni–ZrO2–SiO2 synthesized by the sol–gel process, J. Allo. Com. 495 (2010) 574–577.
[21] J. G. Seo, M. H. Youn, S. Park, J. S. Chung, In. K. Song, Hydrogen production by steam reforming of liquefied natural gas (LNG) over Ni/Al2O3–ZrO2 xerogel catalysts: Effect of calcination temperature of Al2O3–ZrO2 xerogel supports, J. Ind. Eng. Chem. 34 (2009) 3755–3763.

[22] G. Goncalves, M.K. Lenzi, O.A.A. Santos, L.M.M. Jorge, Preparation and characterization of nickel based catalysts on silica, alumina and titania obtained by sol–gel method, J. Non-Cryst. Sol. 352 (2006) 3697-3704.

[23] J. Escobar, J.A. De Los Reyes, T. Viveros, Nickel on TiO2-modified Al2O3 sol-gel oxides: Effect of Synthesis Parameters on the Supported Phase Properties, Appl. Catal. A Gen. 253 (2003) 151-163.

[24] Y. Wang, R.A. Caruso, J. Mater, Preparation and characterization of CuO- ZrO2 nanopowders. Chem. 12 (2002) 1442–1445.

[25] L, Zhang, X. Wang, B. Tan, U.S. Ozkan, Effect of preparation method on structural characteristics and propane steam reforming performance of Ni–Al2O3 catalysts, J. Mol. Cata. A: Chem. 297 (2009) 26–34.
[26] J. G. Seo, M. H. Youn, Y. Bang, I. K. Song, Effect of Ni/Al atomic ratio of mesoporous Ni-Al2O3 aerogel atalysts on their catalytic activity for hydrogen production by steam reforming of liquefied natural gas (LNG), J. Ind. Eng. Chem. 35 (2010) 12174-12181.
[27] L. Chen, X. Sun, Y. Liu, Y. Li, Preparation and characterization of porous MgO and NiO/MgO nanocomposites. Appl. Cata.A: Gen. 265 (2004) 123–128
[28] M. Numata, R. Takahashi, I. Yamada, K. Nakanishi, S. Sato, Sol–gel preparation of Ni/TiO2 catalysts with bimodal pore structures, Appl. Cata. A: Gen. 383 (2010) 66–72.
[29] Pechini MP (1967) US 3330697.
[30] Y.  J.O. Asencios, J. D.A. Bellido, E. M. Assaf, Synthesis of NiO–MgO–ZrO2 catalysts and their performance in reforming of model biogas, Appl. Cata. A: Gen. 397 (2011) 138–144.
[31] J. D.A. Bellido, Y. E. Tanabe, E. M. Assaf, Carbon dioxide reforming of ethanol over Ni/Y2O3–ZrO2 catalysts, J. Appl. Cata. B, Env, 90 (2009) 485-488.
[32] P. Marcos, D. Gouvea, Effect of MgO segregation and solubilization on the morphology of ZrO2 powders during synthesis by the Pechini's method, Cerm. 50 (2004) 38–42.