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Abstract
Quality inspection is an indispensable part of modern industrial manufacturing. Steel as a major industry requires 
constant surveillance and supervision through its various stages of production. Continuous casting is a critical step 
in the steel manufacturing process in which molten steel is solidified into a semi-finished product called slab. Once 
the slab is released from the casting unit, the surface often has longitudinal or transverse cracks. Being exposed 
to air, the crack surfaces oxidize and do not weld during rolling. The early detection of these defects on the slab 
saves significant time, effort and production expense, reduces costs, and prevents wasted processing steps and 
rolling mill faults. Traditionally, the inspection process has been carried out visually through human inspectors. 
However, human inspection is subjective, error-prone, tedious and time consuming. This paper presents an initial 
study to validate the feasibility of automated inspection of continuously cast hot slabs using computer vision 
techniques. An automated inspection system such as the one described in this paper can inspect a slab coming out 
of a caster while it is still hot. The image processing techniques applied in this work including wavelet transform, 
morphological operations, edge detection and clustering are time-efficient and simply applicable in industrial 
applications which demand online computations. The experimental results with 97.0% sensitivity and 96.0% 
specificity demonstrated that the proposed algorithm was effective and reliable. To the best of our knowledge, this 
is the first time that such a computerized algorithm has been applied in Iran’s steel industry for quality inspection 
of continuously cast hot slabs.

Keywords: Automatic inspection, Continuously cast slabs, Surface crack, Morphological operations, Edge 
detection, Color clustering, Neural network.
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1. Introduction1

Continuous casting is an established technology 
used to solidify molten steel. In this process, molten 
steel flows from the tundish in the water cool open-
ended mold. Partially solidified slab is continuously 
withdrawn from the bottom of the mold into water 
spray. Heat is extracted and metal exits the mold 
as a solid fabricated sheet. Figure 1 shows part of 
a continuous casting unit in Esfahan’s Mobarakeh 
Steel Company.
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The steel slabs produced in a continuous caster 
are susceptible to a variety of surface imperfections 
including: longitudinal face cracks, transverse 
face cracks, frontal cracks, collar, corner and edge 
tears, scum patch, scum pits, scum tear, bleeder and 
rapeseed scab 1). These defects have to be detected 
before the subsequent rolling process in the finishing 
mills. So, an inspection stage between casting and 
hot-rolling is needed to detect and remove injured 
slabs.

Currently, the surface quality of continuously 
cast slabs is visually observed using binoculars 
which tend to be error-prone, slow, tiresome and 
even dangerous. The use of human workers in 
routine tasks like this should be avoided if possible, 
because the performance of a human inspector has a 
strong tendency to drop drastically in tedious jobs. 
Besides, harsh ambient condition in steel mills 
such as high temperature, air and sound pollution 
can potentially impair human efficiency and also 
general health.



International Journal of ISSI, Vol.9 (2012), No.1

31

Fig. 1. Continuous casting unit in Mobarakeh Steel 
Company.

Among all possible defects, surface cracks are 
the ones most likely to occur. According to statistics 
reported by Mobarakeh Steel Complex 2), these cracks 
account for almost 80% of the slab surface defects in 
the first six months of 2011. Being exposed to air, the 
crack surfaces oxidize and do not weld during rolling. 
This work focused on detecting and classifying 
surface cracks of hot slabs which can be very harmful 
when slabs are rolled to the thick plate. There exist 
techniques in the literature for defect detection in 
steel industry. Conventional crack inspection can be 
classified as:
•	 Radiological methods: X-rays 3), gamma rays and 

neutron beams 4)

•	 Electrical and magnetic methods: eddy current 5), 
magnetic flux leakage 6) and microwave testing 7)

•	 Vibration and acoustic measurement methods 
8): ultrasonic and mechanical impedance 
measurements

•	 Visual and optical methods: holographic 
interferometry 9) and dye penetrants 10)

•	 Thermal methods 11): infrared radiation and 
temperature difference
In this work, we aimed to assess the operational 

feasibility and effectiveness of computer vision and 
image processing techniques for automated detection 
of surface cracks in continuously cast hot slabs. To 
the best of our knowledge, this is the first time that a 
computerized algorithm has been applied to detect and 
classify surface cracks of continuously cast hot slabs 
in Iran’s steel industry.

Automatic inspection is now increasingly being 
used for quality control in different industries. The 
incentive to use automatic inspection techniques 
is to achieve a reliable homogenous assessment 
beyond human limits even under harsh conditions. 
The traditional manual inspection is cumbersome, 
subjective and prone to discrepancies. The automation 
of the inspection process saves companies a lot of time 
and money and enhances their products quality and 
competitiveness. 

To study the feasibility of computer vision-based 
check of hot slab surface, we gathered a database 
consisting of 400 images from hot slabs. These images 

were captured using a Charge-Coupled Device (CCD) 
camera immediately after slabs were released from 
the casting unit. We propose two methods based on 
morphological operations and color clustering in 
combination with a neural network classifier.

The rest of the paper is organized as follows: Method 
describes the major steps of our proposed method that 
includes preprocessing, binary segmentation and color 
clustering. Edge enhancement and noise reduction 
section describes the three stages of the preprocessing 
phase. After that, the Binary segmentation algorithm 
is presented. Next, Color segmentation and Crack 
localization are explained respectively. Then, Results 
are presented and finally, a conclusion is drawn. 

2. Method

In this paper, we aimed to develop an automated 
algorithm for discerning longitudinal and transverse 
cracks in the surface of continuously cast hot steel 
slabs. The challenges of crack detection in optical 
images lied in the strong noisy background, irregularity 
of crack patterns, and significant false positives. After 
casting, the surface of the slabs was scaled. The scale-
covered background camouflaged the damages on the 
slab and created surface structures easily confusable 
with cracks.

In order to remove the background noise and 
reduce false positive, we applied a three-stage 
selective sharpening method on the images. This 
included image reconstruction by interpolating 
adaptively-amplified Wavelet coefficients, anisotropic 
diffusion and finally, adaptive Gaussian filtering. 
Two distinct algorithms for the detection of surface 
cracks were proposed. The first algorithm employed 
a non-derivative edge detection followed by several 
morphological operations. The second algorithm 
was based on color clustering in combination with a 
supervised classifier. After detecting defects on the 
slab surface, the position and size of the crack were 
determined using Hough transform. Figure 2 depicts 
the block diagram of the overall system. The detailed 
information and parameter selection for each block 
have been presented in the following sections.

Fig. 2. Block diagram of the proposed system.
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3. Edge enhancement and noise reduction

As mentioned before, one of the major challenges 
in crack detection is the inhomogeneous background. 
The surface of a hot slab is covered in scale (Figure 
3) which makes the detection of cracks troublesome. 
Before any further processing, the background 
noise must be suppressed. For this, a three-stage 
preprocessing chain was proposed as follows:

Fig. 3. Sample image of the slab surface: scales 
covered most parts of slab surface.

3.1. Wavelet transform
 

Wavelet transform is used to sharpen the crack 
edges while weakening noise 12). Wavelets are 
waveforms which are generated from single function  
φ by dilations and translations. The basic idea of the 
wavelet transform is to decompose the given function 
as a superposition of wavelets in different levels. Two-
level decomposition of a two-dimensional wavelet 
transforms is shown in Figure 4. At each level, 2D 
wavelet coefficients are divided into four sub-blocks. 
The sub-blocks labeled ‘H’, ‘V’ and ‘D’ correspond 
to Horizontal, Vertical and Diagonal coefficients 
respectively, representing the detailed images, 
while the sub-block ‘A’ corresponds to coefficients 
representing the approximation image. A vertical line 
in the image produces large wavelet coefficients along 
a vertical line in the ‘V’ band, whereas the coefficients 
away from the line remain small. Similarly, a 
horizontal line produces large wavelet coefficients 
along a horizontal line in the ‘H’ band. 

Fig. 4. Two-level decomposition structure of a 
2D-Wavelet transform.

Although the mentioned approach is applicable 
to any wavelet function, 2D discrete Haar wavelet 
transform was used because of its simplicity and fast 
computation. First, the gray image was decomposed 
in two levels. In order to detect longitudinal cracks, 
vertical coefficients were strengthened whilst for 
transverse cracks, horizontal coefficients were 
amplified. Figure 5 shows the reconstructed image 
obtained after attenuating horizontal and diagonal 
coefficients by a factor of 0.5 and amplifying vertical 
coefficients by a factor of 4.

As can be seen, the inverse wavelet transform 
gives an image with vertical edges sharpened, but it is 
still full of redundant edges. To smooth the remaining 
background noise and eliminate unwanted edges, 
non-linear Diffusion filtering was applied on the 
reconstructed image. 

Fig. 5. Reconstructed image after amplifying vertical 
coefficient and attenuating horizontal and diagonal 
coefficients.

3.2. Anisotropic diffusion
Nonlinear diffusion filter, originally formulated 

by Perona and Malik in 1987 13), can reduce the 
noise without distorting or changing the location of 
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the edges. The basic idea can be summarized by the 
following equation:

))()((. ,, tt
t
I Ic yxyx ∇∇=
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                                          (1)

where .∇  is the divergence operator which 
essentially measures how the density changes within 
a region and c yx,

 
is the diffusivity function. The 

diffusion coefficient is applied to the local change in 
the image )(, tI yx∇  in different directions, indicating 
how much importance we give to the local change. 
A constant c leads to a linear diffusion equation, with 
a homogeneous diffusivity. In this case, all locations 
in the image, including the edges smoothed equally, 
are undesirable. If the function c be image dependent, 
then the linear diffusion equation will become a non-
linear diffusion equation. For example, Perona and 
Malik used image derivatives 
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The result is illustrated in Figure 6.
As depicted in Figure 6, the vertical crack in the 

smoothed image is apparent while the background is 
more matt in appearance.

Fig. 6. Result of filtering by anisotropic diffusion 
( 005.0,2 == kα ).

3.3. Adaptive Gaussian filtering

As the last preprocessing step, a discrete Gaussian 
filter was applied to the image. The Gaussian operator has 
been considered to be optimal for image smoothing 14):

)
2

(

2
2

22

2
1),,( σ

σπ
σ

yx
eyxG

+
−

=                               (3)

where 
)

2
(

2
2

22

2
1),,( σ

σπ
σ

yx
eyxG

+
−

= is the standard deviation of Gaussian 
distribution. The Gaussian function essentially 
removes the influence of points greater than σ3
from the centre of the template. Instead of using 
the same window shape and size to smooth an 
image independent of the local content, in adaptive 
smoothing, the window shape and size could be 
adapted to the local image content. The window 
is adaptively sized in such a way that the lines of 
a specific orientation are selectively strengthened 
while random noise is removed (Figure 7).

Fig. 7. Result of adaptive Gaussian filtering.

4. Binary segmentation
4.1. Edge detection

Edge detection techniques outline the boundaries 
of image objects. Among the various edge detection 
techniques compared, including Prewitt, Sobel, 
SUSAN, LOG, Robert and Canny, SUSAN 
performed the best. This algorithm is non-derivative 
and consequently, robust to noise. Edge detection 
techniques, such as Sobel detectors, are not appropriate 
in this case. This is because of their high sensitivity to 
noise due to the use of derivative operators employed 
to find edges.

SUSAN 15) stands for Smallest Univalue 
Segment Assimilating Nucleus. The SUSAN 
operator finds more than just edges, since it can 
also derive corners (where boundaries change 
direction sharply). Additionally, it can also be 
used for structure-preserving noise reduction. 
SUSAN places a circular mask over the pixel to 
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be tested (the nucleus). Essentially, The USAN is 
the number of pixels within the mask that have a 
similar value to the nucleus. As can be seen from 
Figure 8, the USAN value increases when nucleus 
lies in an edgeless region and decreases near a 
corner or an edge. This way, the size of USAN 
determines the presence of edges.

Fig. 8. Circular masks at different places along the 
edge; USANs are shown as the gray parts of the masks 16).

Figure 9 shows the result obtained using the 
SUSAN edge detector. As shown, the output of 
the edge detector is a binary image. The crack 
is emerged as multiple long lines superimposed 
upon a noisy background. The crack pieces are 
not connected and there are many artifacts in the 
form of short and erratic edges. Thus, different 
morphological operators were used to connect the 
isolated sections of the cracks in the binary image 
and eliminate small noisy edges.

Fig. 9. The output of the SUSAN edge detector.

4.2. Morphological filtering

For the purposes of defect detection required 
in industrial vision applications, mathematical 
morphology is more useful than the convolution 
operations employed in signal processing because the 
morphological operators can process images directly 
based on shape characteristics 17). Morphological 
image processing is a branch of image processing 
based on shape concept and set theory. The basic idea 

in binary morphology is to transform an image with 
a pre-defined shape called the structuring element 
(also known as a kernel). The two fundamental 
morphological operators are dilation and erosion. 
Other operations could be extracted from these two 
basic ones.

The dilation of a binary image by a structuring 
element generally enlarges the objects in the image 
such that the intersection of the input image with 
the translated kernel is not empty. On the contrary, 
erosion is the operation of shrinking so that all the 
pixels in the translated kernel are a subset of the 
input image.

To remove background artifacts, in the first 
step, a binary opening was performed on the image 
using a linear structuring element (Figure 10). 
Opening was erosion followed by dilation. Opening 
smoothed the contour of an image and broke the 
narrow gaps.

As depicted in Figure 10, the crack pieces are 
disconnected. In the next step, a morphological 
dilation by a square structuring element was 
applied to thicken the lines. Figure 11 illustrates 
the operation of the dilation operator. The size of 
the structuring element was adaptively selected for 
each image.

Fig. 10. Upper: the binary output of the edge detection 
algorithm. Down: Opening of the left image by a 
linear structuring element.
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Fig. 11. Before (Upper) and after (Down) dilation.

In order to fill the remaining gaps and extract 
the crack as an integrated surface, each of the pixels 
in which the number of crack candidates in its 
neighborhood exceeded a threshold was joined to the 
crack (Figure 12). 

Fig. 12. Linking the gaps along the crack.

In the next step, the crack region was filled in by 
performing a binary closing using a square structuring 
element. Closing is dilation followed by erosion. As 
opposed to opening, closing fills gaps and joins small 
breaks. As can be seen in Figure 12, there still existed 
noise (false detection) and disconnected crack pieces 
in the image. It should be noted that the noise appears 
as isolated small regions, whose area are much smaller 
than that of the crack. Therefore, by setting a minimum 
area, the noise can be removed. Figure 13 shows the 

result of closing with a square structuring element 
followed by length thresholding.

Fig. 13. The result of closing after thresholding.

After extracting the crack region, to specify 
the exact location of the crack, its medial axis was 
calculated using morphological skeletonization. The 
process of skeleton (medial axis) extraction can be 
formulated as the union of subtracting images obtained 
by applying erosions and openings with structural 
elements of increasing sizes 14). Skeletonization 
successively erodes foreground pixels in a binary 
image until a connective one-pixel-wide skeleton is 
formed (Figure 14). 

Fig. 14. The medial axis of the crack.

5. Color segmentation

Multiple-dimensional values of color make its 
discrimination potentially superior to the single-
dimensional monochrome values. However, 
processing color images requires more time and 
computation in comparison with the binary images. 
So we employed a cascade algorithm in which instead 
of processing the whole image, only candidate crack 
regions were processed. Suspicious regions were 
identified as enclosing boxes around medial axes 
detected by binary segmentation (Figure 15). This 
way, the search space became restricted and reduced 
considerably the computational complexity of color 
segmentation.
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Fig. 15. Extracting suspicious regions from the color 
image.

5.1. K-means clustering

K-means is a popular data-clustering technique 
which partitions the input space into K clusters 
based on some similarity/dissimilarity metric and 
this provides a means of segmentation 18). The main 
idea is to define K centroid seeds, one for each 
cluster. The value of K may or may not be known 
a priori. The better choice is to place centroids as 
much as possible far away from each other. The 
next step is to assign each point of the given image 
to the cluster with the nearest centroid. For each 
sample, the distance from the centroid of each 
cluster is computed. If a sample is not currently in 
the cluster with the closest centroid, it is switched 
to that cluster. When no point is pending, K new 
centroids for the gaining clusters are computed. 
The centroid of the cluster gaining the new sample 
and the cluster losing the sample are updated. As a 
result, the K centroid seeds change their location 
step by step and another cycle is performed until 
convergence is achieved and centroid seeds do 
not move any more. This procedure has been 
illustrated in Figure 16.

Fig. 16. Block diagram of the k-means clustering.

In general, color can be defined in many different 
ways, leading to a wide variety of color spaces. 
Color images are typically represented as linear 
combinations of the primary colors: Red, Green, 
and Blue (RGB). However, in RGB images, there  
is a significant correlation between the three color 
channels and that may not be a suitable representation 
for image processing purposes. Several other color 
spaces such as YIQ, HSV, CIEL∗a∗b∗ are defined for 
representing color images. In our study, we used the 
HSV (hue, saturation, value) color-space because 
it separated chromaticity and intensity information 
and thereby provided a way to get intensity-invariant 
chromaticity measures. In Figure 17, the Hue and 
saturation channel values were used to divide the 
image into three clusters. Before clustering, the image 
was passed through a smoothing filter to eliminate the 
inherent noise.

Fig. 17. K-Means segmentation using hue and 
saturation values: In each image, cracks are 
segmented as a separate cluster (dark gray in both).
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In unsupervised classification techniques such 
as k-means, samples in the feature space are not 
labeled. Thus, after k-means clustering, the cluster 
corresponding to the crack region is identified by 
using multiple geometrical features. These features 
are described in the section below.

5.2 Feature extraction

Feature extraction is a crucial step which 
contributes significantly to the overall performance of 
the automated inspection system. In general, features 
must be tolerant to different types of intra-class 
variances whilst preserving essential information of 
input patterns. The following geometrical features 
have been used: 
1)	 Length and width vectors: the size of every column 

and row of the object.

2)	 Vertical and horizontal variances: the variance of 
the length and width vectors.

3)	 Vertical and horizontal mean: average values of 
the length and width vectors.

4)	 Aspect ratio: the ratio of vertical mean to horizontal 
mean of the object.

5)	 Maximum length and width: maximum value of 
the length and width vectors.

6)	 The length and width of the object bounding box: 
the length and width of the smallest rectangle 
enclosing the object.

7)	 The center of gravity: ),( 11
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are the coordinates of the object pixels and 

N is the total number of the object pixels.

8)	 Area: The total number of pixels that an object 
occupies.

9)	 Perimeter: The number of circumferential pixels 
around the outer edges of the object.

10)	Roundness:
Area
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××π4
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 this shape factor has a 

minimum value of 1 for a circle and larger values 
for shapes having rough or jagged edges.

5.3. Neural network classification

The extracted features are used to train a classifier. 
We employed an artificial neural network (ANN) 
to perform classification task. An ANN is typically 
characterized by its architecture and its learning 
process.

5.3.1. ANN Architecture

The architecture of an ANN is referred to as the 
interconnection structure between different layers 
of neurons. Multi-layer perceptron (MLP) neural 
network has been one of the most widely satisfactorily 
applied classifiers for different classification problems. 
We applied a MLP with one hidden layer. The number 
of hidden layers, depending on the complexity of 
functions and input features, is selected via trial and 
error. Most of the time, using more than two hidden 
layers does not improve the performance and only 
increases calculation cost 19). The number of neurons 
on the input layer is obtained by adding the length 
of all the extracted features. All the features listed 
in section 5.2 except length and width vectors were 
concatenated and fed into the classifier. Accordingly, 
the input layer had 14 neurons. The number of hidden 
neurons can theoretically be any number; however as 
the network complexity increases, there is an increased 
chance of the network overfitting the training data 
and the classifier losing the ability to generalize 19). 
According to our experience, it is better to choose the 
number of hidden neurons near half the input neurons. 
The number of output neurons depends on the number 
of classes, which, for this problem, was two: defective 
and non-defective. 

5.3.2. ANN training

An ANN requires some sort of training to learn an 
unknown input-output relationship of the presented 
samples. The goal of the training procedure is to find 
a set of weights that allow the network to perform 
correctly on the training examples. A variety of 
learning algorithms exist for determining the optimal 
network weights. One learning algorithm mainly used 
for MLP is a supervised learning called the back-
propagation (BP) rule. 
In the MLP network used in our study, the relationship 
between the input neurons (im ) and the output neuron 
(o) is determined by:
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The activation function for both the hidden and 
output layers is bipolar sigmoid function: 
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The activation function defines the output of neurons 
in terms of their weighted inputs. In equation (4), N is 
the number of the hidden neurons, M is the number of 
input neurons, wn  is the weight from the n th hidden 
neuron to the output neuron, w mn  is the weight from 
m th input neuron to the n th hidden neuron, θ ni  and 
θ hid are the input and hidden biases, respectively.

Network weights are iteratively adjusted and 
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computed based on back-propagation with momentum 
terms, as follows:

)()1( tt wZw kjjkkj ∆+=+∆ µαδ                            (5)

Where )( ∑+=
k

kkjjj xwZ g θ , xk is the activity 
level of the k th neuron in the previous layer, and  
w kj

 
is the weight of the connection between the j th 

and k th neurons. δ k is the error between the desired 
and the actual ANN output value. α is the learning 
rate, µ is the momentum, and t  is the number of 
iterations. The momentum term determines the effect 
of past weight changes on the current weight update. 
BP is a gradient descent method that can get stuck in 
local minima. The momentum term prevents the 
network from being trapped into local minima and 
speeds up the convergence of the network. In this 
study, the learning rate and momentum were set at 
0.05 and 0.8 respectively and weights were randomly 
initialized within [-1,1].

Training occurred through an appropriate database 
of samples. The dataset consisted of features extracted 
from 400 images including 200 defective and 200 
non-defective samples. 100 defective and 100 non-
defective samples were used to train the classifier 
and the remaining unseen samples were used to test 
the generalization capability of the network. Among 
the objects shown in Figure 18, only the object 2 is 
classified as a crack.

6. Calculating Crack Size and Position

The Hough transform (HT) is a technique that 
locates shapes in images 20). In particular, it has been 
used to extract lines, circles and ellipses. In the case of 
lines, its mathematical definition is equivalent to the 
Radon transform 21). The Hough transform of a binary 
image ),( yxI is defined as 20):

∫ ∫
∞

∞−

∞

∞−

−−= dxdyyxyxIH )sincos(),(),( θθρδρθ               (6)

whereδ is the Dirac delta-function. The Hough 
transform maps each point ),( yx in the original image 
to a sinusoid θθρ sincos yx += , where ρ is the 
perpendicular distance from the origin and θ is the 
angle with the normal. As illustrated in Figure 19, a 
set of image points which lie on a straight line produce 
sinusoids that all cross at a single point in the Hough 
transform.

For the inverse transform, each point in the 
Hough domain is transformed into a straight line in 
the image. By using the inverse Hough function and 
setting a threshold T for the total number of sinusoids 
that cross at the specific point, it is possible to filter 
the image to keep only lines that contain at least T 
points. This property of the Hough transform is used 
for exact localization of the extracted cracks. The line 
reconstructed by inverse Hough transform is used to 
obtain the size and spatial localization of the crack. 
The position of the crack is measured from the top left 
corner of the image.

Figure 20 shows the Graphical User Interface 
(GUI) of the crack detection system which is designed 
in MATLAB®.

7. Experimental results

For a binary classifier, there can be four possible 
outcomes: true positives (TP), true negatives (TN), 
false positives (FP), and false negatives (FN). The 
accuracy of the classification is measured using 
sensitivity and specificity metrics 22):

PFNT
NTySpecificit

NFPT
PTySensitivit

+
=

+
=

                                                   (6)

The sensitivity is the proportion of correctly 
detected cracks to all samples where a defect truly 
occurs. The specificity is the proportion of undetected 
defect cases to the number of samples where defects 
do not occur truly.

Among 200 test samples presented to the 
algorithm, 193 (97 defective and 96 non-defective) 

Fig. 18. Obtained clusters by K-means color clustering are classified using a neural network. Only object2 is 
labeled as a crack.
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Fig. 19. Illustration of the Hough transform: Points of a straight line in the image domain mapped to sinusoids in 
the Hough domain, all crossing at a single point.

Fig. 20. Crack detection interface: The blue rectangle highlights the detected crack.

samples were correctly classified. Accordingly, 
sensitivity and specificity of the system were 97.0% 
and 96.0 % respectively. The overall accuracy is the 
measure of true findings (true-positive + true-negative 
results) divided by all test results, which was 96.5% in 
this test (Table 1).

Table 1. Classification results

TP TN FP FN Sensitivity Specificity Overall 
accuracy

97 96 4 3 97.0% 96.0% 96.5%

The best, worst and average response times in 
MATLAB (Release 2009a) on a laptop computer 
with Intel core i7 processor, 2.40 GHz and 4 GB 

RAM running Windows 7, are presented in Table 2. 
According to Table 2, this method has a high speed to 
satisfy online demand. This computation speed would 
be acceptable for real applications.

Table 2. Response time of the method

Best time Worst time Mean time

0.95 s 2.73 s 2.21 s

The promising initial results prove the feasibility 
and accuracy of computerized surface crack 
detection in hot slabs. Automated quality inspection 
in continuous casting is a great benefit for the steel 
industry, providing homogeneous precise and reliable 
check and saving time, costs and operations.
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8. Conclusion 

This paper presented a new automated approach 
for crack detection and localization in hot steel 
slab surface images. In the first step, a three-stage 
preprocessing was performed to enhance cracks and 
remove unwanted edges. Then we used a binary 
segmentation algorithm based on edge detection 
and morphological filtering. For more precise crack 
detection, a color segmentation scheme based on 
clustering in combination with a neural network 
classifier was proposed. This algorithm allowed 
reliable detection of cracks in the surface of hot 
slabs without removing the surface scale. Low over- 
and under-detection rate of the algorithm (false 
positive and false negative, respectively) obtained 
over hundreds of samples (Table 1) along with its 
flexibility in adapting to the needs of other steel plants 
were the remarkable features of the proposed method. 
Furthermore, in addition to detecting and classifying 
surface cracks, the system also determined the location 
of the cracks and their size, providing the possibility 
of indicating the origin of the formation of cracks and 
consequently, reducing them. 

We expect the implementation of the whole 
automated surface inspection system including 
multiple cameras for continuous comprehensive 
surface monitoring to provide the following 
benefits:
•	 50% improvement in inspection
•	 65% time saving
•	 25% reduction in expenses
•	 45% improvement in products quality

With these characteristics, the system provides 
not only direct economic benefits, but also offers the 
possibility of implementing “hot charge”, resulting in 
significant energy saving and higher throughput. The 
automatic crack detection tool is still in progress for 
detecting other types of slab imperfections. We also 
intend to investigate the use of infrared images in our 
future work.
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