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Abstract

Inthe present work, a meshless method called Finite Point Method (FPM) is developed to simulate the
solidification process of a continuously cast steel bloom in both primary and secondary cooling regions. The
method is based on the use of a weighted least-square interpolation procedure. A transverse slice of the bloom
moving at casting speed is considered as the computational domain and two dimensional heat transfer equations
are solved in the computational domain. The present FPM-thermal analysis is coupled with the microsegregation
model and used to investigate the capability of the FPM for use in hot tearing study. This hypothesis is verified
by comparing surface temperatures simulated by both FPM (the method proposed in this study) and finite
volume method (FVM) (the conventional method). Also the simulated surface temperatures are compared with
thermography measurements. The results reveal that the proposed FPM can be used successfully both for the
simulation of steel bloom to determine its temperature field and for hot tearing study.
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1- Introduction

Continuous casting has become the primary
method for producing steel blooms, slabs, and billets.
Quality control in continuous casting is the basis not
only for reducing production costs and processing
time but also for ensuring reproducibility of the
casting operation and increased production . These
can only be achieved if the thickness of the solidified
shell and the temperature distribution along different
cooling zones are known as two initial parameters of
solidification in the continuous casting process =
Calculating the values for these two parameters
forms the first step in solidification control. For this
purpose, solidification is simulated by solving the
heat transfer equation, which is then used to calculate
the thickness of the solidified shell and the strand
temperature profile >®. The idea of using simulation
to calculate and control solidification parameters is
not merely a theoretical speculation but its
practicality has already been demonstrated.

The methods commonly used for solidification
simulation are FEM, FVM, and finite difference
method (FDM). These methods are mesh-based in
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which the spatial domain where the partial
differential governing equations are defined is often
discretized into meshes. The basic principle
underlying the formulation of these conventional
numerical methods is that a mesh must be predefined
to provide a certain relationship between the nodes .

Meshless methods use a set of nodes scattered
within the problem domain and on the boundaries of
the domain to represent the problem domain and its
boundaries. These sets of scattered nodes do not form
a mesh, which means that no information on the
relationship between the nodes is required at least for
field variable interpolation.

Generally, mesh generation is not very easy,
especially in a complex geometry (in the FEM) while
the complex boundary conditions also cause
difficulties for FDM.  Despite some apparent
similarities between FPM and FEM, a comparison of
them for two dimensional problems reveals the
advantages and superiority of FPM over FEM in
certain respects. Generally speaking, it would be
possible to summarize the advantages of the FPM as
follows: (1) The manual work for data preparation is
reduced because of the meshless feature; (2) The
dependent wvariables and their gradients are
continuous in the entire domain; (3) By modifying or
refining the nodal distribution in FPM , a node can be
easily moved, removed, or added in the domain,
while a local mesh modification and the
corresponding nodal and element renumbering will
be necessary in FEM; (4) It would be possible to
couple the thermo-mechanical calculations to the
thermal analysis easily (especially, when compared



with FVM) *'¥ Hence, FPM is gaining wider
industrial applications.

Zhang et al ' used FPM for the first time for
modeling solidification in the continuous casting
process. They simulated the solidification of a strand
in the only mold region with a constant heat flux as
boundary conditions. Their goal was to show that
FPM can be applied for thermal analysis of the
continuous casting process. Although they succeeded
in achieving this objective, it is not yet clear whether
FPM can be applied for other strand sizes (bloom or
billet), if this technique could be used for the
secondary cooling zone with complex boundary
conditions, or if it can be coupled with
microsegregation model and strain analysis.

The present work intends to develop an FPM for
a 230x250 mm bloom for the mold, spray cooling,
and radiation cooling regions. It will be shown that
FPM could be used for complex boundary conditions
(in the mold and below the mold) and also employed
to calculate the temperature profile as well as the
solidified shell thickness. Moreover, the FPM
developed will be coupled with the microsegregation
model and the strain model to analyze the mushy
zone as well as the cracking strain. Variation of
casting speed is investigated as an important factor in
the convergence of equations to show the flexibility
of FPM in the field of continuous casting modeling.
Additionally, this article aims to provide a simple
description of the basic principles of FPM.

2- Simulation by FPM
The first step in FPM is to provide the problem
domain using sets of nodes scattered in the problem
domain and its boundary. Figure 1 depicts a typical
domain and the scattered nodes.
suport domain

Fig 1. A wpical problem domain, €2, represented
by scattered nodes and three different shapes of
support domains, 2, and the characteristic length
defined in the support domain.

Let us suppose we wanted to find an unknown
function u(X) (the field variable at any point of
interest X). FPM 1is used to solve the equation system
by interpolation of the unknown function within a
small local domain, which is taken to be a circle
centered at a point X (see Figure 1). However, the
small local domain can have different shapes and its
dimension and shape can be different for different
points of interest X, as shown in Figure 1. A support
domain of a point X determines the number of nodes
to be used to support or approximate the function
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value at X; hence, it is termed the support domain of
X,

Generally, the field variable of u(X) in FPM is
approximated at any point of interest X as follows:

u(X) =Y 0, (X U, 4" u 0

Here, X is an arbitrary point in the problem domain
with a circular support domain (e.g. X = [x y]* in 2D
and X = [x v z]" in the 3D case). The term n is the
number of nodes lying in the support domain of X, u;
is the nodal field variable at the k-th node in the
support domain, # is the vector of elements #;, and
01(X) 1s the k-th element of the shape function vector
¢ (which corresponds to the k-th node of the support
domain) .

2-1- Shape function cteation

Creating the shape functions is the most
important issue in FPM methods. The challenge is
how to create the shape functions using only nodes
scattered arbitrarily in a domain without any
predefined mesh to provide connectivity of the
nodes. A series of methods are proposed to construct
the shape functions . In this work, the moving least
square (MLS) approach is used to construct the shape
function. ML'S method first approximates the field
function by:

W(X)=Yp(X)aX)=p"(X)aX) @

where, p;(X) is the j-th component of the vector p(X)
which is termed "base interpolating function” and
contains m monomial basis functions. For a 2D
problem,

p(X)=[1 x y]" for m=3 3
and

pX)=[1 x y xy ¥ 1" form=6 &)

Also in Equation 2, a(X) is the coefficient vector
of elements a;(X). Therefore, the value of the variable
function is approximated at a point like X as a
combination of values of the basic functions at that
point, each weighted by a;. All that needs to be done
is to find suitable values for the coefficients a;.

Let us assume that X;, X5, ....... , X, arc nodes
located in the support domain of X and that u;, u,,
....... , u, are their corresponding nodal values. Figure
1 (left) depicts this support domain. Let us also
suppose X, to be onc of the domain nodes in the
vicinity of point X. From Equation 2, u, can then be
approximated using the value of ¢ at X':

u' (X, )=u, =p" (X, )a( X, )=p'(X,)a(X) (5)

For each node & in the support domain, the

squared error of Equation 5 can be written as a
function of X

E(X)=[p" (X, )a(X)-uT’ (©)
Apparently, F,(X) is expected to be smaller as X

gets closer to Xj,. Thus, an appropriate formula for
a(X) can be obtained by performing a minimization
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task in which each of the error functions EyX) is
minimized to some degree considering the nearness
of X, to X For this purpose, the following function
should be minimized:

J(X)= Zn:W(X, X, JE(X)=(PTa—u)"W(PTa-u) (7)

=1

where, W(X,X};) is called the weight function which

should be chosen such that larger values are obtained

when X and X are closer together. Here, we have

chosen the exponential weight function as follows:
exp(_w HX_ XkH <R

XX, )= o' 8)
0 |x-x,|>R

where, ¢ 1s a constant. The term R 1s the radius of the

support domain. The matrices of P, u, a, and W are

defined as:

P=[p(X,) p(X,) p(X,) ... p(X,)] ©
a= [al a, da;... an]T (10)
u =, u, wu,... u) (1)
W(X,X,) 0
Wix,X,)
W= (12)
0 W(X,X,)

In MLS approximation, at an arbitrary point X,
a(X) is chosen to minimize the weighted residual
(Equation 7). The minimization condition requires:

V,J(X)=0 (13)
V,J(X)=2PW(P a—u)=0 (14)
Equation 14 is rewritten as Equation 15:

PWP a(X)=PWu (15)

To simplify the notation, let us define new matrices
as follows:

A=PWP" (16)
B=PW 17

Therefore, the matrix of coefficients could be written
as:

a(X)=A"Bu (18)
Considering Equations 2 and 8, it is possible to write
the field function as follows:

u(X)z=u"(X)=p"(X)A"'Bu=¢"u (19
where, the term ¢ is the shape function. Note that in
this formulation only the shape function is a function
of X. This is very useful because in solving the

differential equation by FPM, the derivations are
considered only on the shape function '

3- Solution of the governing equations by FPM
3-1- Heat transfer model

FPM is applied to solve the energy equation with
boundary conditions of the continuous casting of

breakout bloom in various cooling areas. Figure 2
shows the problem domain of the bloom represented
by a series of scattered nodes. The point step is 3 mm
and 1680 points are distributed in the problem
domain. In fact, Figure 2 depicts the transverse slice
which is cooled in the boundaries across various
cooling regions. We suppose this slice to be moving
down at a velocity equal to the casting speed from
the meniscus up to the end point of the simulation.
This strategy aids us to consider a two-dimensional
solution of the equations for the whole strand.

n sin® n

iz om o aae oz oz oz
Fig. 2. The problem domain represented by the
nodes scattered in the domain and at the boundaries.

Equation 20 (energy equation) is solved for the
nodes located in the problem domain. Equation 21 is
Neumann boundary conditions and is solved for the
nodes located on the boundary. Finally, Equation 22
is Dirichlet boundary condition considered for all the
nodes at time zero. For a convection-diffusion
problem such as energy equation, a special treatment
is needed to stabilize the numerical approximation ",

—l - o'T a'T
pMC M- =KDV T—k(T)[aXZ +8y2 4 20)
—k(T)ﬂ =q, 21
on
r=r,,, for t=0 22)

Onate et al stabilized the Neumann boundary
using the "residual stabilization technique"'”. They
proposed Equation 23 as the stabilized Neumann
boundary using the simple 1D convection-diffusion
problem.

2Ly it
on

— 23
21’ (23)

where

2 2
r=k(TVT +0, =k(T)a f +k(T)a f +0, (@4
Ox oy
The term / is the characteristic length and can be
found by using searching the exact nodal values for
the simple 1D problem with O, = 0. Application of
this concept to FPM by Onate et al gives



ah . .
e for quadratic interpolations s
h=y 25)
ah . : ‘
3 for linear interpolations

where, o 1s defined as a function of Peclet number as
follows:

a = coth|Pe| - 1 (26)

[Pe

The term A is measured along the streamline
between the end points for a particular support
domain as shown in Figure 1.

As a first step, let us discretize the energy
equation in the time space for any node k in the
support domain including the internal nodes
(Equation 20) as follows:

At t
p(T,;).cr(T,;).u 8 I 8 Tk) 27
A ox’
and for the support domain including the pomts lying
on the boundaries (28)
. T;j t azr az z
(T} )[nsirh- ™ +ncosd P El= +7 [k(T; )- ( 8 — )1

Here, the term in the left hand bracket is GT/dx for
0=0ando 70y for 6 = 90, otherwise, it is related to
0T/0n at the comer of the problem domain (see
Figure 2). In fact, the terms for unknown temperature
and its derivatives presented in Equations 27 and 28
for any node k at time t are calculated by FPM as
follows:

T/ ~¢" T’ 29
GT' _(64)) T 30)
6x Ox o’

To investigate the effect of liquid convection on
thermal field, it is common to employ an effective
thermal conductivity in the liquid zone * . The
effective thermal conductivity depends on such
operational parameters as electromagnetic mold
stirrer conditions, geometry and size of the
submerged entry nozzle, and the amount of
superheat. In the present model, Louhenkilpi et al’s
" simple suggestion was applied which requires an
increase of two times for the conductivity of the
liquid for a bloom with an electromagnetic stirrer in
the mold region.

3-2- Boundary conditions for heat transfer

The local heat flux density (g,) for every cooling
section is calculated as follows:
In the mold region

ATT C —-az
qn:a prw wQ>< e

m

(32)

l_e*aHme

where, Q is cooling water rate (m’/s), p, is water
density (997 kg/ m” ar 25°C ), C,, is the heat capacity
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of water (4180 J kg™ ar 25°C),

(m), P, is the perimeter of the tube mold (billet and
bloom mold), z is distance from meniscus (m), a is
the slope of straight lines in a g-z half-logarithmic
plot (almost 1.5m™), AT,” is the total increase of the
cooling water temperature (°C), and the term H,,, is
the effective mold length in contact with the melt.

In the spray cooling region *

q,=h,(T'-T,) (33)

where, the subscript j represents the number of spray
cooling sections. In the present research, the spray
cooling zone was divided into 3 sections according to
the flow rate of water, i.e. foot roll, mobile section,
and fixed section areas. A; 1s the convective heat
transfer coefficient in the ;” section, which can be
calculated as follows:

h,=h, .. wyh, G4)

where, h,;, » and, h, ; are the parameters of the
nozzle; for an air-mist spray nozzle, h,; 1s 0.35, r 1s
0.556, and h, ; is 0.13, respectively. w; is the sprayed

water density, which is calculated as follows:

H, is mold length

w, = i” (35)
J

where, 4, is the sprayed area of the ;” j " section and Q;; o

is the spray water flow rate in the / section.

Radiation cooling region '

qn = hRa (T _Tamb) (36)
2 2

hRa :O-g(T + Tamb)(T+ Tamb) (37)

where, ¢ is the emissivity of the bloom surface (0.8),

o is the Stefan-Boltzman constant (5.67x10°
W/m’K?), and T, is the ambient temperature (K).

3-3- Microsegregation model

In order to calculate steel liquidus, solidus, and
peritectic temperatures as well as phase fractions (as
a function of temperature and chemical composition)
required for the thermal analysis and strain analysis
of solidifying steel, a non-equilibrium
microsegregation model based on an analytical
Clyne-Kurz style equation developed by Won and
Thomas ' is used. Liquidus, solidus, and peritectic
temperatures depend on steel composition as follows:

lq = Tpure Zm C01 (38)

Tsol pure Zm CL z(CO z’kz’D CR’fy = 1) (39)
T sfz?;t T ;j;e Zn i k z'a/L Cfx (40)

Extended data needed for this model are listed in
Table 1 and include the partition coefficients (k) and
diffusion coefficients (D) for each phase, as well as
the slopes of the equilibrium liquidus (m) and the
slopes of Ary lines (n) for the pseudo-binary alloy of
each element with iron.
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Table 1. Parameters required for the microsegregation model.

Element k% j* D¢ (cm2/sec) D’ (cm2/sec) m (°C/%) n (°C/%)
C 0.19 034 0.0127exp(-19450/RT) 0.0761exp(-32160/RT)  78.0 -1122

Si 0.77 0.52 8.0exp(-59500/RT) 0.3exp(-60100/RT) 7.6 60

Mn 0.76 0.78 0.76exp(-53640/RT) 0.055exp(-59600/RT) 4.9 -12

P 023 0.13 2.9exp(-55000/RT) 0.01exp(-43700/RT) 344 140

S 0.05 0.035 4.56exp(-51300/RT) 2.4exp(-53400/RT) 38.0 160

Note: R is gas constant of 1.987cal/mol K, and T is temperature in Kelvin.

4- Results and Validation

Table 2 shows the operational and solidification
data required for the simulation of solidification
during continuous casting of a bloom. To validate the
present FPM-thermal analysis, the surface
temperature of the bloom predicted by the present
FPM was compared with both the surface
temperatures predicted by FVM ' and those
measured by the thermography method.

Table 2. The practical conditions and data used for
the numerical simulation of bloom.

Parameter Value
mold dimensions- m 0.23 x0.25
Mold length - m 0.78
Ve — m/min 0.6,0.7,0.8
Mold level - % 85
Q - lit/min 2347
Tpouring - °C 1530
Tso1 - °C 1372
Thg - °C 1492
k- W/mk 39
ky - W/mk (21.6+8.35x10°T)
p—kg/m 796598-0.619x10°T
Lo —kg/m (810591-0.5091x10°T)
C—JkgK 824.6157
Cy—JkgK (429.849+0.1498x10°°T)
AT, < %€ 49
AH,, - J/kg 2340000

Figure 3 compares the surface temperatures of the
bloom simulated by FPM and FVM in various
cooling regions. The same Figure shows the
temperatures measured by the thermovision machine
in the radiation cooling region. Due to the presence
of a high concentration of water vapor in the spray
cooling region, it was not easy to measure the surface
temperature of the bloom in the spray cooling region
by the thermography technique. The thermovision
machine measures temperature on the basis of the
wavelength raised at any temperature. In the first
step, a piece of steel heated to 1000°C was used to
calibrate the thermovision machine. Six points along

the strand length of the bloom surface were measured
so that each measured data is an average of six
measurements.

1600
1: Mold region —=—FPM
1500 2: Foot roll region ; :;VM )
© 1400 3: Mobile section easure
4: Fixed section
o 1300 5: Radiation
3
S 1200
5]
£ 1100
<)
& 1000
900
800

0123 456 7 8 91011121314 1516

Distance from meniscus - m
Fig. 3. The surface temperature of bloom in different
cooling zones simulated by FPM and FVM and also
measured by the thermovision machine.

It can be seen in Figure 3 that the profile of
surface temperature simulated by FPM has a good
agreement with that of the FVM. However, the
temperature simulated by FVM is by almost 15-25°C
higher than those of FPM. Comparison of the
simulated results with the measured data shows that
FPM data are closer to measured data than FVM
results are. However, both FPM and FVM results lay
within the range of standard deviations.

Figure 4 shows variations in surface and core
temperatures of the bloom at the strand length for
three different casting velocities. It is expected that
increasing the casting velocity leads to increasing
temperature profiles of the strand. This is due to the
fact that increased casting speed causes the holding
time of the bloom in the various cooling zones to be
shortened. Figure 4 reveals this expected behavior
predicted by FPM.

Another important investigation in a thermal
analysis coupled with microsegregation calculations
during continuous casting is the analysis of the
mushy zone to study cracking. We, therefore,
checked the calculation of the mushy zone in order to
validate the proposed model. Figure 5 shows the
positions of non-equilibrium solidus and liquidus



temperatures from chilled surface at the length of the
strand simulated by both FPM and FVM. This Figure
was plotted at f; = / for the solidus temperature and
at f;, = 0 for the liquidus temperature. As shown, the
solidus and liquidus positions simulated by the
proposed FPM are similar to the results obtained
from FVM.

1600

1500 Core temperatures
1400
1300
1200

1100

Temperature - °C

1000

900

P

Surface temperatures

800

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Distance from meniscus - m

Fig. 4. Variations of surface and core temperatures
of the bloom at the strand length for three different
casting velocities.
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‘é 0.02 brittle range thickness

0
0 2 4 6 8 10 12 14 16 18

Distance from meniscus - m

Fig. 5. The positions of solidus and liquidus
temperatures from chilled surface at the length of the
strand simulated by both FPM and FVM.

As already mentioned, a thermal model coupled
with the microsegregation model is applied to
calculate the requirements of hot tearing study;
therefore, an instrumental thermal model should have
enough flexibility to be easily coupled with the
microsegregation model. In this subsection, the
ability of the proposed model is investigated in
determining hot tearing requirements.

During the continuous casting process, cracking
strain only acts over a preferable range of the mushy
zone. An important stage in hot tearing study is the
determination of this preferable range known as
brittle temperature range (A7p) which is limited
between the solid fractions fy =/ and fy =0.96.
Therefore, the following expression was stated for
the brittle temperature range as the difference of
temperatures corresponding to fs =0.96 and fy =1 '
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AT, =T(f, =0.96)~T(fy = 1) @n

In fact, the term A7y and the brittle range thickness
are two important requirements for hot tearing study.
Figure 5 shows the brittle range of the mushy
zone calculated by the proposed FPM-thermal
analysis coupled with the microsegregation model.
This region is limited between fs =/ and fs =0.96. As
is clear from Figure 5, the line fg =/ comes to its end
at a length of 15.8 m (point B) from meniscus and the
line fg =0.96 ends at a length of 12.9 m (point A)
from meniscus. The brittle range thickness is
increased from meniscus up to point A after which it
decreases by up to point B. Figure 6 shows the
variation of brittle range thickness at the length of the
strand for various casting speeds. The edge generated
at a length of 6 m is due to the decrease in the
cooling rate from the spray cooling zone to the
radiation cooling zone. It can be seen that the brittle
range thickness increased by up to a maximum value
and then suddenly dropped to zero. This means that
the tendency for hot tearing increases followed by a
sharp decrease at the length of the strand. Fig. 6 also
depicts the effect of casting speed on the behavior of
brittle range thickness at the length of strand.
According to this Figure, increasing casting speed
has a considerable effect on the maximum position as
well as on the end position of the diagram while the
slope brittle range thickness follows a constant
decreasing trend. Figure 6, plotted using the proposed
FPM-thermal  analysis  coupled  with  the
microsegregation model, reveals that the proposed
model can be successfully used for cracking study.

0.045

Spray region Radiation region

0.04 [y

0.035 | | Mold region

0.03

Brittle range thickness - m
o
[=]
n

0 2 4 6 8 10 12 14 16 18 20
Distance from meniscus - m

Fig. 6. Variations in brittle vange thickness at the
length of strand for several casting speeds.

Another requirement for hot tearing study which
the proposed model is expected to calculate is the
brittle temperature range. Figure 7 shows variations
of ATp at the length of strand for different casting
speeds.

It has been demonstrated that increasing A7p
leads to a decrease in critical cracking strain resulting
in increased crack susceptibility. It has also been
found that increasing the casting speed and the
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cooling rate causes the crack susceptibility to
increase "2 The results of Figure 7 confirm the
above observations. It can be seen from Fig.7 that
increasing the casting speed leads to increased A7p;
i.e., increasing the casting speed increases crack
susceptibility. Another finding illustrated in Figure 7
is that when the cooling rate decreases (from the Foot
Roll area to the Radiation Area), a considerable
decrease occurs in A7 (from 65°C up to 47°C); this
means that increasing cooling rate increases crack
susceptibility.

67
85 1. V= 0.6 m/min
. 63 2.V =07 ru/mm
b 3.V_=0.8 m/min
v 61 4.V=0.9 m/min
o Mobile section
= 59
£ g7 | Footroll
555
e,
&z 53
gy Radiation cooling
= 34—
@ 49 22—
—_—
47 Spray cooling
45

07 22 3.7 52 67 8.2 9.7 112 127

Distance from meniscus - m

Fig. 7. Variations of brittle temperature range at the
length of strand for several casting speeds.

5- Conclusion

To simulate the solidification process of a
continuously cast bloom, a FPM was developed and
the  thermal analysis together with the
microsegregation calculations of the bloom was
carried out for various cooling regions. The results of
thermal analysis such as solidus position, liquidus
position, and temperature profiles of the core and
surface simulated by FPM were compared with those
obtained from FVM. The comparison shows a good
agreement between the simulation resultsby both
FPM and FVM. Also surface temperature
measurements of the bloom in the radiation region
validate the results from FPM and FVM. Also, the
effect of casting speed on the thermal analysis was
investigated to observe the same results as expected.

The results of microsegregation model coupled
with the thermal model showed that the proposed
model was able to analyze the mushy zone and that it
could be useful in investigating the hot tearing
phenomena during continuous casting.

Another finding of the present work was that the
governing equations could be successfully converged
using FPM coupled with microsegregation models
for various casting speeds.

These observations indicate that FPM is a suitable
method to simulate the continuous casting of steel in
various cooling regions. An advantage of FPM found

to be its accuracy and ease of application in the
thermal analysis of continuous casting.
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