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Using the artificial neural network to investigate the effect of parameters 
in square cup deep drawing of aluminum-steel laminated sheets
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In this study, the effective parameters involved in the deep drawing of double-layer metal sheets in a die of 
square cross-section were investigated through artificial neural network (ANN) modeling. For this purpose, 
first, the deep drawing of double-layer (Al1200 / ST14) sheets was carried out experimentally. Also, the finite 
element simulation of the process was performed, and the results validated through experimental tests. A set 
of 46 different experimental data were employed in this paper. The ANN was trained by using a mean square 
error of 10-4. The input parameters, i.e., punch radius, die radius, blank holder force, clearance, and the per-
mutation layers were set to the network. The surface response method (RSM); was employed to evaluate the 
results of the ANN model, and the input parameters of the deep drawing process on the thinning of Al1200 
and ST14 composite layers were analyzed. The obtained results indicate that the punch edge radius has the 
most significant influence on the thinning of the Al1200 layer. Increasing the gap between the punch and die 
to 1/4 of the sheet thickness, increased the cup wall layers thickness of the Al1200 and ST14 respectively by 
3.38% and 0.5%. The performance of the ANN model demonstrates that it can estimate the amount of thinning 
in the composite layers with satisfactory accuracy.
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Deep drawing is a sheet metal forming process 
used in various industries 1). The deep drawing of 
double-layer metal sheets can be used to manufacture 
parts with different interior and exterior properties 

(e.g., resistance to corrosion and friction and electrical 
and thermal conductivities) 2-3). Because of various 
products, the deep drawing process has found numerous 
applications in industries related to auto manufacturing, 
aerospace, medical devices, and electronics 

4).
Artificial intelligence (AI)   

5) and design of 
experiments (DoE) 6) are widely used in complex 
modeling. In recent years, the artificial neural networks 
(ANN) have been used in numerous areas, including 
the estimation and prediction of functions. An ANN 
is a type of information processing technology, and it 
can efficiently solve the problems in which a complex 
nonlinear relationship exists between the input and output 
variables. The use of ANN, as a new method of predicting 
the nonlinear behavior of materials, is a cheaper, more 
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accessible, more efficient, and more reliable substitute 
for estimating the mechanical properties of materials 
using data obtained from experimental tests 7-8).

Mahdavian et al. 9) investigated the effect of punch 
profile (shape) on the deep drawing of circular section 
aluminum sheets. In each of the performed experiments 
using a deep drawing die apparatus, they measured the 
Aluminum sheet holder force and the punch movement 
to examine the effects of different parameters on the 
deep drawing process. They concluded that the punch 
geometry affects the friction between the blank and the 
punch. Li et al. 10) studied the delamination phenomenon 
in the deep drawing of double-layer metal sheets. They 
considered the viscoelastic behavior for the mechanical 
properties of the glue model and the connected elements. 
According to their findings, wrinkling leads to the 
delamination of double-layer metal sheets. Wang et 
al. 11) employed the surface response method and finite 
element analysis to control the strain path during the 
forming process by applying different plate holder 
forces. Delmezier et al. 12) used the optimized material 
properties of thin sheets in the deep drawing process. 
They considered two material properties in their studies, 
namely the work hardening and the average anisotropy 
coefficient. They also used the surface response method 
to define two objective functions (i.e., rupture and 
wrinkling) for controlling the forming flaws. The surface 
response approach establishes a limited number of 
assessments for the objective functions, which are used 
in determining the optimal material properties. Singh et 
al. 13) employed a neural network and genetic algorithm 
(GA); to identify the optimal parameters in the deep 
drawing of circular sheet blanks. They conducted 28 tests 
to obtain the needed information for the training of the 
ANN. The output of their tests was the thickness of the 
samples obtained from each experiment; at two critical 
points. Manoochehri et al. 14) used a neural network and 
the annealing algorithm to optimize the deep drawing 
process. Their objective was to model and optimize the 
input parameters of the deep drawing process for SS304. 
Morrovati et al.15) performed research on optimizing 
the initial shape of multilayer metal sheet blanks used 
in deep drawing. For this purpose, they employed the 
GA and ANN along with the FE simulation. In their 
research, the ANN predicts the final shape of the blank 
after its deformation, and the GA proposes the most 
optimum form of the initial blank. Hosseini et 
al. 16) published a paper titled using the ANN-FE 
approach to adjust the gap between the plate 
holder and the die surface during the impact of a 
punch in the deep drawing of circular sheet blanks. 
They demonstrated that choosing a proper gap 
between the plate holder and the die surface helps achieve 
a uniform thickness throughout the sample wall and a 
greater depth in the sample. Takala et al. 17) investigated 
the effects of process parameters to eliminate the 

defects like tearing, wrinkling, earing, and 
spring-back. The study also focuses on the deep 
drawing of the composite sandwich materials 
at the elevated temperatures. The different 
behaviors are observed for different materials 
at high temperatures. Mahmood et al. 18) studied the 
flexible square cup deep drawing process of micro SS304. 
The results showed that the initial foil thickness 
affects the thinning and thickening values of the formed 
cup wall. The optimization method is feasible to 
indicate the optimum initial blank shape for producing 
free flange-micro square parts. Reddy et al. 19) 
analyzed the deep drawing process of rectangular 
cups made of different anisotropic materials. 
The experiments were performed by designing 
deep drawing tools such as die, blank holder, 
and punch. Also, the numerical simulations performed 
for deep drawing of rectangular cups using two 
levels of parameters like lubricating condition and 
blank material.

In this paper, the deep drawing of a double-layer 
(Al/ST) sheet inside a die with a square cross-section 
has been modeled by the finite element method. 
The obtained simulation results have been validated 
through experimental tests. In order to model this 
process and to achieve the maximum amount of 
thinning in the wall of the obtained sample, 46 
experiments with different inputs have been designed 
using the ANN; these tests have been performed 
by using the FE method and, ultimately, the ANN 
has been trained using these data. Then, by using 
the achievements of this research, i.e., the ANN 
model of the process with the maximum amount of 
thinning in the sample, and by employing the surface 
response method, the effects of the input parameters of 
the deep drawing process on the thinning flaw have been 
determined.

2. The experimental process

A deep drawing dies with a square cross-section 
was used to perform the experimental tests (Fig 1). 
The specially designed die was used because of the 
forces involved in the workpiece and the slipping of the 
sheet.

As is observed, this die system consists of a punch, 
a die, a blank holder mechanism with adjustable holding 
force, bushing, and guide rods. The mechanical properties 
of the examined steel-aluminum sheets were shown in 
Fig. 2 and table. 1.

The dimensions of the original aluminum-steel 
blanks were 85×85×0.7 mm3. A hydraulic press 
with a 50-ton capacity provided the force needed 
to form the square shape cups. The punch moves to 
a depth of 15 mm to plastically deform the blanks.
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3. Finite element simulation of the deep 
drawing process

The ABAQUS software package has been used to 

 Young's modulus (GPa) Poisson's Ratio Density (Kg/m3) 

ST 14 steel 210 0.3 7800 

Al-1200 75 0.33 2710 

 

perform the numerical simulation of the deep drawing 
of double-layer metal sheets. The model shown in Fig. 
3 is a three-dimensional designed model. Due to the 
symmetry of the sample’s geometry, only one-quarter of 

Fig. 1.  a) Experimental square section die set up b) Schematic the process and input parameters.

Fig. 2. Engineering stress-strain curves for ST14 and Al1200.

Table 1. Mechanical Properties of ST14 and Al1200.
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the overall geometry needs to be analyzed. The double-
layer sheet consisting of Al1200 and steel ST14 was 
designed in a shell form. The components of the die 
assembly, including the punch, blank holder, and die, 
were modeled as rigid elements. Moreover, the Dynamic-
Explicit analytical method employed in this research. 

The two-layer sheet was modeled in Shell planar 
by Four-node shell elements (S4R), and the “Tie” 
constraint was defined to tie two separate surfaces 
together so that there is no relative motion between 
them. This type of constraint allows fusing 
two regions 20).

The meshes applied to all the die and double-layer 
sheet components have a quad form, and a structured 
technique was used in this model. Table 2 shows 
the types of elements and the specifications of the

die components and double-layer sheets used in the 
simulations.

4. Designing and training the artificial neural 
network

One of the objectives of this paper is to evaluate the 
quality of the final sample obtained in the mentioned 
deep drawing process by the ANN. The neural 
network has been trained using the data 
obtained from the numerical simulation of the 
process by the ABAQUS software. 46 test data 
were utilized to train the neural network. Each 
test sample had five inputs and two outputs. The 
effective process parameters were considered as the input 
parameters of the network (given in Table 3).

Fig. 3. Geometrical model of the die.

Table 2. Specifications of the meshes and elements used in the simulations.

Table 3. Input parameters of the neural network.

Levels Matrix radius  Punch radius  Blank holder force  Clearance (t= sheet thickness) Permutation layer  

Unit (mm) (mm) (Newton) (mm) (top-down) 
1 3.35 5.35 2000 1.1t Al-ST 
2 4.35 6.35 4000 1.2t ST-Al 
3 5.35 7.35 6000 1.3t -- 
4 6.35 8.35 8000 1.4t -- 
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Part name Nodes number Element type Properties type 
Punch Four node R3D4 Rigid 
Blank holder Four node R3D4 Rigid 
Double layer sheets Four nodes decreased Shell - S4R Deformation 
3 
 

Four node R3D4 Rigid 
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Two outputs were extracted from each Experiment. 
The first output relates to the maximum amount 
of thinning in the aluminum layer, and the second 
output is the maximum thickness reduction in the 
steel layer. Since the initial thickness of the sheets is 

0.7 mm, the values associated with the selected quality 
index are all less than the initial sheet thickness, 
and the ideal case would be the one in which these 
values are closer to 0.7. Thus, 46 experiments were 
performed, with the specifications given in Table 4.

Table 4. Results of simulation analysis as the input data for the ANN.

Input Output 
Test 

number 
Matrix 
edge 

radius 

Punch 
edge 

radius 

Blank 
holder 
force 

Clearance Permutation 
layers 

Maximum 
thinning in the 
aluminum layer 

Maximum 
thinning in 
steel layer 

1 1 1 1 1 1 0.5466 0.6073 
2 1 2 2 2 1 0.5694 0.6151 
3 1 3 3 3 2 0.5532 0.6236 
4 1 4 4 4 2 0.5578 0.6244 
5 2 1 2 3 2 0.5020 0.6032 
6 2 2 1 4 2 0.5352 0.6175 
7 2 3 4 1 1 0.5857 0.6233 
8 2 4 3 2 1 0.6038 0.6288 
9 3 1 3 4 1 0.5623 0.6083 
10 3 2 4 3 1 0.5805 0.6179 
11 3 3 1 2 2 0.5861 0.6308 
12 3 4 2 1 2 0.6009 0.6334 
13 4 1 4 2 2 0.4905 0.6060 
14 4 2 3 1 2 0.5549 0.6237 
15 4 3 2 4 1 0.6083 0.6277 
16 4 4 1 3 1 0.6323 0.6340 
17 3 4 1 4 2 0.6075 0.6351 
18 3 3 2 2 1 0.6065 0.6264 
19 2 3 4 2 2 0.5808 0.6281 
20 2 2 2 3 1 0.5776 0.6173 
21 1 2 4 1 1 0.5562 0.6133 
22 1 3 4 3 2 0.5470 0.6213 
23 1 4 2 4 1 0.5971 0.6267 
24 2 1 3 4 2 0.4837 0.5993 
25 3 1 3 3 1 0.5592 0.6092 
26 4 3 1 2 2 0.5937 0.6322 
27 4 2 2 2 2 0.5548 0.6242 
28 4 4 4 4 1 0.6193 0.6321 
29 2 3 2 1 2 0.5731 0.6287 
30 1 1 1 3 2 0.5010 0.6003 
31 4 1 4 1 1 0.5718 0.6126 
32 3 2 3 2 2 0.5328 0.6187 
33 3 1 4 4 1 0.5642 0.6073 
34 3 4 2 3 2 0.6026 0.6335 
35 2 3 1 3 1 0.5884 0.6254 
36 1 4 3 2 1 0.5929 0.6258 
37 1 2 3 2 1 0.5664 0.6134 
38 1 3 1 2 2 0.5551 0.6276 
39 2 4 3 4 2 0.5804 0.6297 
40 2 1 4 2 1 0.5563 0.6067 
41 3 3 1 1 2 0.5881 0.6319 
42 3 2 4 1 1 0.5764 0.6199 
43 4 2 1 2 1 0.6026 0.6236 
44 4 3 2 3 2 0.5919 0.6316 
45 4 4 1 2 2 0.6190 0.6370 
46 4 3 3 3 1 0.6080 0.6278 
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which in this research is 46, according to Table. 4. The 
process of modeling the ANN is summarized in Fig 4.

Table. 2 shows the trial and error procedure for 
finding the optimal structure of the ANN for estimating 
the amount of thinning in the double-layer sheet resulting 
from the deep drawing of square blanks. In this procedure, 
the mean squared error and the fitting coefficient were 
computed and compared for ANN with different structures 
(different numbers of hidden layers and neurons) and, 
finally, a network with the most negligible value of 
mean squared error and the largest fitting coefficient 
was selected as the ANN with the best performance.

The trained ANN has two layers in the hidden 
layer section, with 10 and 15 neurons allocated to 
the first and second layers, respectively. The lower 
and upper limits of the permitted number of neurons 
assigned to the layers were obtained from Eq.1.

In the above equation, n1 is the number of neurons 
in the first layer, ni is the number of inputs, n0 is the 
number of outputs, and k is the number of test samples, 

2(𝑛𝑛𝑖𝑖 + 𝑛𝑛0) ≤ 𝑛𝑛1 ≤
k(𝑛𝑛𝑖𝑖 + 𝑛𝑛0) − 𝑛𝑛0
𝑛𝑛𝑖𝑖 + 𝑛𝑛0 + 1  

Hidden layers Neurons in each hidden layer Mean error squares Fitting coefficient 
1 2 4.6127 0.98639 
1 3 4.3678 0.98715 
1 4 0.7603 0.99723 
1 5 0.4275 0.99849 
1 6 0.1537 0.99934 
1 7 0.5873 0.99784 
1 8 0.5398 0.99746 
1 9 0.4653 0.99828 
1 10 0.5113 0.99788 
2 2 2.0379 0.99362 
2 3 2.6176 0.99118 
2 4 0.4797 0.99839 
2 5 0.0172 0.99986 
2 6 0.1225 0.99951 
2 7 0.3373 0.99869 
2 8 0.8355 0.9975 
2 9 0.4122 0.99819 
2 10 1.6592 0.99045 

 

Table 5.  Process of trial and error for finding the optimal numbers of hidden layers and neurons.

Fig. 4. The process of modeling the ANN.

Eq.(1)
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By analyzing the performances of various networks, 
the multilayer perceptron network with two hidden layers 
and five neurons in each of those layers was selected as 
the network with the best performance. As is observed in 
Table 5, the mean squared error of the selected network 
(0.0172) is the lowest value, compared to the other 
networks. Also, the fitting coefficient is very close to 1.0, 
which indicates the good performance of the selected 
ANN. The modeled ANN was illustrated in Fig. 5.

A tan-sigmoid transformation function was used in 
both hidden layers (Fig. 6). The role of a transfer function 
is to compute the output of a layer from its input. The 
mathematical form of this function was given in Eq. 2. 

70% of the data was allocated for the training of the 
ANN. 15% of the data was considered for validation, 
and the remaining 15% considered for testing the ANN. 

Rp

Rd

B.H.F

Lay up

Cl

Minimum 
STH AL-

1200

Minimum 
STH ST 14

Input layer Hidden layer Output layer

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑛𝑛) = (2/(1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−2𝑛𝑛))) − 1 

The ANN was trained by the Levenberg-Marquardt 
(trail) algorithm. Fig. 7 shows the performance of the 
modeled ANN versus the scattering of test, training, 
validation, and total data. The network’s performance 
was measured by the mean squared error, which has 
an upper limit of 10-4, and as this limit is reached, the 
network’s behavior stops changing. These graphs 
clearly show the matching of empirical (target) data 
with the outputs of the ANN. The regression diagram 
and the fitting coefficients for the data indicate a lack 
of over-fitting and under-fitting errors and point out 
the proper training of the ANN. Since the scattering of 
the total data is above 0.9, it can be concluded that the 
data obtained from the simulation of the ANN are valid 
and reliable.

Fig. 7. Distribution of the neural network data based on the mean squared error criterion.

Fig. 5.  Multilayer network with two hidden layers, with 
15 neurons in the first layer and ten neurons in the second 
layer. Fig. 6. Tan sigmoid transformation function.

Eq.(2)
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steel layer, which is the bottom layer of the fabricated cup.
Fig. 9 shows the distributions of thickness in the 

wrinkled cup, in the Al and ST layers, and along with 
path B, based on the experiments and simulations. In 
the experimental work, maximum thinning occurs in 
the radial region of the punch and in agreement with the 
simulation. In the practical work, the maximum amounts 
of thinning in the Al and ST layers are 21% and 16.6% of 
the initial sheet thickness respectively. For the Al and ST 
layers, these values are 7.09% and 5.7% higher than the 
maximum thinning values obtained in the simulation work.

5. Results and discussion
5.1. Validation of results

Fig. 8 shows the thickness variations along the 
two directions defined based on the experimental and 
simulations. It is observed that maximum thinning 
occurs in the radial region of the punch and along path 
B. Thus, this direction has been used for validation 
purposes and for analyzing the thickness changes.

This graph also shows that the highest amount of 
thinning in the aluminum layer is 3% more than that in the 

0.58

0.82

0.78

0.74
0.7

0.66
0.62

0 10 20 30 40 50 60

1

1

3

5

Profil cup

2 3 4 5
ST 14 (Path A)
ST 14 (Path B)
AL 1200 (Path B)
AL 1200 (Path A)

Distance from bottom of cup (mm)

W
al

l T
hi

ck
ne

ss
 (m

m
)

Fig. 8. Paths A and B determined for measuring the thickness variations.

Fig. 9. Graph of thickness distribution obtained through simulation, along the two paths and in the two materials used 
in the wrinkled cup.
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Furthermore, the thickness difference decreases 
for stainless steel and Al 1100, and the uniformity 
of strain distribution highly increases in the 
forming process.

Fig. 10 shows the effect of die edge radius on the 
thickness of the aluminum layer. It is observed that, with a 
47.2% increase in the die shoulder radius, the thicknesses 
of the Al and ST layers also increase by 5% and 3.96%, 
respectively. Therefore, with the increase of die shoulder 
radius, sheet flow will improve in this radial region, and 
consequently, less thinning will occur in this section. 
Thus, a die radius of 6.35 mm can be considered a suitable 
radius for improving the deep drawing process. The 
thinning of the steel layer diminishes by 1.04% relative 
to the aluminum layer.

The design of experiments by the surface response 
method has been employed in this research to analyze 
the effects of the governing input parameters on the deep 
drawing process. The examined output is the maximum 
amount of thinning in the Al and ST layers which is 
also considered as an index for the onset of damage. 

Reddy et al. 19) showed for all the cups that the 
stress formation zone is along with the corners of the 
cup. With the help of forming limit diagram (FLD), the 
strain condition for the fracture risk element can be used 
to evaluate the Feasibility of the forming process-9). 
In this work, a square blank was used. According 
to Morovvati et al. work 15), using an optimal blank 
shape, a reduction of about 12% in the deformation 
force is seen in the deep drawing process for a cup. 

Fig. 10. Thickness variations in the (A) steel and (B) aluminum layers of the wrinkled cup, based on the experimental 
work and the simulation along path B.
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Another parameter to consider is the thinning of a layer 
relative to the initial thickness of the raw blank. In the 
conducted investigations, due to the lower tensile strength 
of aluminum, the amount of thinning in aluminum layers 
relative to the initial sheet thickness has always been 
less than that in steel layers. Adnan et al. 21) showed that 
the work is more affected by the die profile radius than 
the punch profile radius. This is attributed to the work 
consumed in the plastic deformation being much more in 
the case of the die profile radius. The great majority of the 
sheet will be formed over the die profile radius (the part 
which forms the cup wall) as compared to a small part of 
the sheet which will form over the punch profile radius.

Fig. 12 illustrates the effect of blank holder force on 
the thickness of Al and ST layers. It is observed that with 
a 75% increase in the blank holder force, the thicknesses 
of the Al and ST layers in the cup wall are reduced by 
2.5% and 2.3%, respectively. This amount diminishes in 
the steel layer by 0.2% relative to the aluminum layer; 
because the increase of the blank holder force does not 

Fig. 11 shows the effect of punch edge radius on 
the thickness of the Al1200 and the ST14 layers. It is 
observed that with a 35.9% increase in the punch radius, 
the thicknesses of the Al and ST layers also linearly 
increase by 5.75% and 0.95%, respectively. This is 
due to the easier flow of the sheet material inside the 
die cavity, which reduces the thickness variations 
and the share of sheet stretching in this radial region. 
Based on these results, a punch radius of 8.35 mm 
can be considered a suitable radius for improving the 
flow of the blank material and reducing the amount of 
thinning. The amount of thinning in the steel layer has 
diminished by 4.8% compared to the aluminum layer. 
This matter indicates that, despite the higher strength of 
the steel layer relative to the aluminum layer, because of 
the arrangement of these layers, the steel layer, which 
constitutes the outer layer of the cup, undergoes more 
stretching than the upper (Al) layer. However, steel is 
stronger than aluminum and the thickness increase of the 
steel layer is also less than that of the aluminum layer. 

Fig. 11. Effect of die shoulder radius on the thickness of (A) steel and (B) aluminum layer in the cup wall.

Fig. 12. Effects of punch nose radius on the thickness of (A) steel and (B) aluminum layer in the cup wall.

M. Mahmoodi et al. / International Journal of ISSI, Vol. 17(2020), No.2, 1-13
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this Investigation indicate that by increasing the gap to 
¼ of the sheet thickness, the thicknesses of the Al and 
ST layers also increase by 3.38% and 0.5%, respectively. 
So, this value has diminished by 2.88% in the steel layer 
relative to the aluminum layer. The increase of thickness, 
i.e., reduction of thinning, is less in the bottom layer than 
the top layer. The gap between a punch and die is an 
important parameter in the success of the deep drawing 
process. A small gap causes the ironing and severe 
thinning of the sheet in the die cavity and eventually leads 
to its rupture, while a large gap results in the wrinkling of 
the cup walls. Therefore, for a successful deep drawing 
operation, it is necessary to determine a suitable gap 
value. It is usually 25% of the initial sheet thickness.

Fig. 14 shows the effects of the process parameters 
on the obtained empirical results. Choosing incorrect 
parameter values will lead to the rupture or wrinkling of 
the double-layer sample. This wrinkling can be avoided by 
selecting the correct blank holding force (BHF), reduced 
friction, increasing the tool edge radius, and reducing 
the deep drawing depth all together in one operation. 
Fracture defect is eliminated with proper chosen BHF.

allow the sheet to flow from the edge region of the cup 
and, therefore, the length of the sheet material increases 
as a result of thinning in the cup wall. Consequently, 
the amount of thinning in the cup will increase with the 
increase of the blank holder force. Nevertheless, the blank 
holder force plays an important role in controlling the flow 
of the sheet material and eliminating the wrinkling in the 
edge region of the cup. So, by choosing an appropriate 
blank holder force, parts free of wrinkling and rupture 
can be fabricated. Since most of the BHF; is concentrated 
on the corners where the metal thickens more, the sides 
of the rectangle cannot get enough pressure to restrain 
the metal and prevent wrinkling. Increasing the blank 
holder pressure at the sides of the rectangular blank using 
a multipoint pressure control system may improve the 
formability of rectangular blanks. Control of the BHF; 
improves the formability and the quality of the final part.

Fig. 13 shows the effect of the gap between a punch 
and die on the thickness of the Al and ST layers in the 
cup wall. The gap considered in this work is based on the 
sheet’s initial thickness, and the maximum amount of gap 
is taken as ¼ of the total sheet thickness. The findings of 

Fig. 13. Effect of blank holder force on the thickness of (A) steel and (B) aluminum layers in the cup wall.

Fig. 14. Effects of the gap between a punch and die on the thickness of the (A) steel and (B) aluminum layers in the cup 
wall.
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6. Conclusion

In this paper, 3D finite element simulations and 
experimental tests have been used to explore the deep-
drawing of double-layer sheets of aluminum 1200 
and steel ST14 in a die with a square cross-section. 
Finite element simulation, has been validated through 
experimental deep drawing operations and to collect 
different thinning output data needed for the training of 
the ANN. A multilayer ANN and the surface response 
method have been used to analyze the amount of 
thinning in the double-layer sample with a square cross-
section. The performance of the ANN indicates that it 
can estimate the amount of thinning in the sample with 
satisfactory accuracy. The obtained results indicate 
that by employing the mathematical models, especially 
the ANN model, the effects of the process parameters 
involved in the deep drawing of square section samples 
can be investigated without costly and time-consuming 
tests and experiments. An examination of thickness 
distribution in the sample layers shows that the maximum 
amount of thinning occurs in the radial region of the 
punch and along with path B (Fig. 9.) Also, the effects of 
the input parameters of the deep drawing process on the 
percent thinning of the Al and ST layer are as follows:
• 

•    

•

• 

With a 47.2% increase in the die shoulder radius, the 
thicknesses of the Al and ST layers increase by 5% 
and 3.96%, respectively.
With a 35.9% increase in the punch edge radius, 
the thicknesses of the Al and ST layers increase by 
5.75% and 0.95%, respectively.
With a 75% increase in the blank holder force, the 
thicknesses of the Al and ST layers in the cup wall 
diminish by 2.5% and 2.3%, respectively.
By increasing the gap between a punch and die to 
¼ of the sheet thickness, the thicknesses of the Al 
and ST layers in the cup wall increase by 3.38% and 

0.5%, respectively.
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